4 research outputs found

    Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles

    No full text
    Suspended particle devices (SPDs) adapted for controlling the transmission of electromagnetic radiation have become an area of considerable focus for smart window technology due to their desirable properties, such as instant and precise light control and cost-effectiveness. Here, we demonstrate a SPD with tunable transparency in the visible regime using colloidal assemblies of nanoparticles. The observed transparency using ZnS/SiO<sub>2</sub> core/shell colloidal nanoparticles is dynamically tunable in response to an external electric field with increased transparency when applied voltage increases. The observed transparency change is attributed to structural ordering of nanoparticle assemblies and thereby modifies the photonic band structures, as confirmed by the finite-difference time-domain simulations of Maxwell’s equations. The transparency of the device can also be manipulated by changing the particle size and the device thickness. In addition to transparency, structural colorations and their dynamic tunability are demonstrated using α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> core/shell nanomaterials, resulting from the combination of inherent optical properties of α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanomaterials and coloration due to their tunable structural particle assemblies in response to electric stimuli

    Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles

    No full text
    Suspended particle devices (SPDs) adapted for controlling the transmission of electromagnetic radiation have become an area of considerable focus for smart window technology due to their desirable properties, such as instant and precise light control and cost-effectiveness. Here, we demonstrate a SPD with tunable transparency in the visible regime using colloidal assemblies of nanoparticles. The observed transparency using ZnS/SiO<sub>2</sub> core/shell colloidal nanoparticles is dynamically tunable in response to an external electric field with increased transparency when applied voltage increases. The observed transparency change is attributed to structural ordering of nanoparticle assemblies and thereby modifies the photonic band structures, as confirmed by the finite-difference time-domain simulations of Maxwell’s equations. The transparency of the device can also be manipulated by changing the particle size and the device thickness. In addition to transparency, structural colorations and their dynamic tunability are demonstrated using α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> core/shell nanomaterials, resulting from the combination of inherent optical properties of α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanomaterials and coloration due to their tunable structural particle assemblies in response to electric stimuli

    Electro-Optical Device with Tunable Transparency Using Colloidal Core/Shell Nanoparticles

    No full text
    Suspended particle devices (SPDs) adapted for controlling the transmission of electromagnetic radiation have become an area of considerable focus for smart window technology due to their desirable properties, such as instant and precise light control and cost-effectiveness. Here, we demonstrate a SPD with tunable transparency in the visible regime using colloidal assemblies of nanoparticles. The observed transparency using ZnS/SiO<sub>2</sub> core/shell colloidal nanoparticles is dynamically tunable in response to an external electric field with increased transparency when applied voltage increases. The observed transparency change is attributed to structural ordering of nanoparticle assemblies and thereby modifies the photonic band structures, as confirmed by the finite-difference time-domain simulations of Maxwell’s equations. The transparency of the device can also be manipulated by changing the particle size and the device thickness. In addition to transparency, structural colorations and their dynamic tunability are demonstrated using α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> core/shell nanomaterials, resulting from the combination of inherent optical properties of α-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanomaterials and coloration due to their tunable structural particle assemblies in response to electric stimuli

    Ultralight Conductive Silver Nanowire Aerogels

    No full text
    Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm<sup>3</sup> and an electrical conductivity up to 51 000 S/m. Mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa
    corecore