37 research outputs found

    Freshwater salinization syndrome limits management efforts to improve water quality

    Get PDF
    Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed ā€œchemical cocktailsā€, in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers

    Small Drains, Big Problems: The Impact of Dry Weather Runoff on Shoreline Water Quality at Enclosed Beaches

    Full text link
    Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportionate impact on enclosed beach water quality for five reasons: (1) dry weather surface flows (primarily from overirrigation of lawns and ornamental plants) harbor FIB at concentrations exceeding recreational water quality criteria; (2) small drains can trap dry weather runoff during high tide, and then release it in a bolus during the falling tide when drainpipe outlets are exposed; (3) nearshore turbulence is low (turbulent diffusivities approximately 10(-3) m(2) s(-1)), limiting dilution of FIB and other runoff-associated pollutants once they enter the bay; (4) once in the bay, runoff can form buoyant plumes that further limit vertical mixing and dilution; and (5) local winds can force buoyant runoff plumes back against the shoreline, where water depth is minimal and human contact likely. Outdoor water conservation and urban retrofits that minimize the volume of dry and wet weather runoff entering the local storm drain system may be the best option for improving beach water quality in Newport Bay and other urban-impacted enclosed beaches

    Meeting the criteria: linking biofilter design to fecal indicator bacteria removal

    No full text
    The capture, treatment, and reuse of storm-water runoff are win-win propositions that can lead to improvements in both human water security and ecosystem health. Although not all treatment technologies facilitate the capture, treatment, and reuse of water, biofilters do. Biofilters are engineered analogues of natural systems that use low energy, natural processes to treat stormwater. Biofilter design is closely linked to treatment efficiency. As such, specific design components, such as submerged zones (SZs: saturated, organic-rich layers near the base of biofilters), can significantly affect contaminant removal. Of particular interest, is the utility of SZ biofilter designs for removing indicators of pathogens, the so-called fecal indicator bacteria (FIB). FIB exist at high concentrations in stormwater, sometimes several orders of magnitude above recreational, nonpotable reuse, or drinking water standards, and have been identified as one of the primary barriers to stormwater reuse. A comparison of FIB removal values from literature indicates that SZ systems significantly enhance FIB removal (āˆ¼10-fold) relative to other design configurations (p < 0.05). Processes that may contribute to this effect include physicochemical filtration, biofilm formation, and protistan grazing, amongst others. A high degree of synergy exists between processes, and many unknowns remain. Model frameworks developed for evaluation of similarly synergistic systems, including biofilter analogues like the vadose zone, may be useful for addressing these unknowns and informing future biofilter design
    corecore