15 research outputs found

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Efficient coupling of 527 nm laser beam power to a long scalelength plasma

    No full text
    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scalelength plasma with n(e)/n(cr) = 0.14 and T-e = 2 keV

    Measurement of carbon ionization balance in high-temperature plasma mixtures by temporally resolved X-ray scattering

    No full text
    We have measured carbon ionization balance in a multi-component plasma in the high-temperature, up to fully ionized, regime by spectrally resolved X-ray scattering. In particular, the measurements have been performed in an underdense (ne ≈ 1021 cm-3) 0.35- μm laser-produced plasma, containing a mixture of C, H with Al and Ar impurities, by using time-resolved back-scattered spectra from a 9.0 keV Zn He-α X-ray probe detected with a high-efficiency graphite Bragg crystal coupled to a framing camera. Measured values for the plasma temperature and carbon ionization state as well as impurity concentrations were obtained by fitting the Doppler-broadened and Compton-shifted scattered spectra at various times after the plasma heating with a modified X-ray form factor that includes the full effects of cross-correlation between different species. These data test collisional-radiative and radiation hydrodynamics modeling from cold (Te ≲ 5 eV) to fully ionized carbon (Te ∼ 280 eV)

    Intensity limits for propagation of 0.527 microm laser beams through large-scale-length plasmas for inertial confinement fusion.

    No full text
    We have established the intensity limits for propagation of a frequency-doubled (2omega, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10(14) W/cm(2) and a strong reduction at intensities up to 10(15) W/cm(2) due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

    Developing an experimental basis for understanding transport in NIF hohlraum plasmas

    Get PDF
    We report on the first multilocation electron temperature (Te) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer “dots.” The measurements define a low resolution “map” of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole. We evaluate the role of kinetic effects, self-generated magnetic fields, and instabilities in causing spatially dependent heat transport in the hohlraum

    Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    No full text
    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ∼20 μm and ∼ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ∼40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ∼100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ∼10 μm, as the shock propagates into the lower density (∼1 g/cc), hot (∼250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ∼300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μ m-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer. © 2013 AIP Publishing LLC
    corecore