21 research outputs found

    Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao

    Get PDF
    Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sponges are currently rarely incorporated in standardized surveys and experimental work is often restricted to a few species. Here were provide chemical and mechanical bioerosion rates for the six excavating sponge species most commonly found on the shallow reef of Curaçao (southern Caribbean): Cliona caribbaea, C. aprica, C. delitrix, C. amplicavata, Siphonodictyon brevitubulatum and Suberea flavolivescens. Chemical, mechanical and total bioerosion rates were estimated based on various experimental approaches applied to sponge infested limestone cores. Conventional standing incubation techniques were shown to strongly influence the chemical dissolution signal. Final rates, based on the change in alkalinity of the incubation water, declined significantly as a function of incubation time. This effect was mitigated by the use of a flow-through incubation system. Additionally, we found that mechanically removed carbonate fragments collected in the flow-through chamber (1 h) as well as a long-term collection method (1 wk) generally yielded comparable estimates for the capacity of these sponges to mechanically remove substratum. Observed interspecific variation could evidently be linked to the adopted boring strategy (i.e. gallery-forming, cavity-forming or network-working) and presence or absence of symbiotic zooxanthellae. Notably, a clear diurnal pattern was found only in species that harbour a dense photosymbiotic community. In these species chemical erosion was substantially higher during the day. Overall, the sum of individually acquired chemical and mechanical erosion using flow-through incubations was comparable to rates obtained gravimetrically. Such consistency is a first in this field of research. These findings support the much needed confirmation that, depending on the scientific demand, the different approaches presented here can be implemented concurrently as standardized methods

    An approximate analytical solution for well flow in anisotropic layered aquifer systems.

    No full text
    The mathematical problem of steady groundwater flow toward a pumping well in an aquifer system consisting of layers (or aquifers) with anisotropy of the horizontal conductivity is solved analytically for the first time. The solution is an approximation for relatively weak anisotropy. If more than one layer is horizontally anisotropic, the method requires that the principal directions of anisotropy are the same in all layers. The presented solution is based on a first order perturbation technique. Comparison with numerical calculations shows a good agreement as long as

    Automated separation of touching grains in digital images of thin sections

    No full text
    The determination of textural properties of granular material with image analysis is generally troubled by the fact that touching grain sections merge into single features. Without separation of these touching grain sections, the textural properties derived from the images contain substantial bias. Existing methods for separating touching grains, like erosion-dilation cycles or watershed segmentation, are time-consuming and/or alter the textural properties of the grain sections analyzed. An alternative computer algorithm is presented to separate touching grain sections in binary images of granular material. The algorithm detects characteristic sharp contact wedges in the outline of touching grain sections and creates an intersection after checking if the angle of the contact wedge is smaller than a user-defined threshold value. The performance of the new algorithm is compared to that of the watershed segmentation method. The resulting grain-size distributions after applying automated separation techniques, were verified with the size distribution obtained with a laboratory laser particle sizer. The algorithm shows improved preservation of size and shape characteristics of the granular material over the watershed segmentation method. © 2002 Elsevier Science Ltd. All rights reserved

    Biogeomorphic impact of oligochaetes (Annelida) on sediment properties and Salicornia spp. seedling establishment

    No full text
    Oligochaetes (Annelida) are active bioturbators that can be present in high densities in the transition zone between intertidal flats and salt marshes, though their occurrence and functional role remain understudied. This study aimed to clarify the biogeomorphic role of oligochaete bioturbation in facilitatingor hindering vegetation establishment. Two microcosm experiments were performed to assess the effect of oligochaete bioturbation on sediment properties, oxidation depth, algal biomass, seed distribution, and germinationsuccess of pioneer species Salicornia spp. Oligochaetes created burrow networks in the sediment matrix, which, together with upward conveyor belt feeding, lead to substrate mixing. Sediment reworking rates of oligochaetes were compared with those of polychaete macrofauna. Bioturbation and bio-irrigationof burrows can stimulate resource flows into the sediment. Oxidation depth increased almost tenfold in the presence of oligochaetes. Their bioturbation did not seem to affect sediment properties such as dry bulk density, porosity, and organic matter content. Sediment reworking, however, significantly reduced algalbiomass at the surface with possible cascading effects on sediment stability and erodibility. Oligochaete conveyor belt feeding buried Salicornia spp. seeds until below the critical germination depth, thus negatively affecting Salicornia spp. germination and seedling establishment. Our study indicates that small,though numerous, oligochaete bioturbators may reduce lateral expansion potential of salt marshes by hindering the establishment of pioneer vegetation in the transition zone. Additionally, in dynamic fine-grained habitats, these oligochaetes have the feature to quickly oxygenate the sediment top layer

    40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats

    Get PDF
    Over the past decades numerous studies have reported declines in stony corals and, in many cases, phase shifts to fleshy macroalgae. However, long-term studies documenting changes in other benthic reef organisms are scarce. Here, we studied changes in cover of corals, algal turfs, benthic cyanobacterial mats, macroalgae, sponges and crustose coralline algae at four reef sites of the Caribbean islands of Curaçao and Bonaire over a time span of 40 yr. Permanent 9 m2 quadrats at 10, 20, 30 and 40 m depth were photographed at 3- to 6-yr intervals from 1973 to 2013. The temporal and spatial dynamics in the six dominant benthic groups were assessed based on image point-analysis. Our results show consistent patterns of benthic community change with a decrease in the cover of calcifying organisms across all sites and depths from 32.6 (1973) to 9.2% (2013) for corals and from 6.4 to 1% for crustose coralline algae. Initially, coral cover was replaced by algal turfs increasing from 24.5 (1973) to 38% around the early 1990s. Fleshy macroalgae, still absent in 1973, also proliferated covering 12% of the substratum approximately 20 yr later. However, these new dominants largely declined in abundance from 2002 to 2013 (11 and 2%, respectively), marking the rise of benthic cyanobacterial mats. Cyanobacterial mats became the most dominant benthic component increasing from a mere 7.1 (2002) to 22.2% (2013). The observed increase was paralleled by a small but significant increase in sponge cover (0.5 to 2.3%). Strikingly, this pattern of degradation and phase change occurred over the reef slope down to mesophotic depths of 40 m. These findings suggest that reefs dominated by algae may be less stable than previously thought and that the next phase may be the dominance of slimy cyanobacterial mats with some sponges
    corecore