7 research outputs found

    Random Strain Induced Correlations in Materials with Intertwined Nematic and Magnetic Orders

    Get PDF
    Electronic nematicity is rarely observed as an isolated instability of a correlated electron system. Instead, in iron pnictides and in certain cuprates and heavy-fermion materials, nematicity is intertwined with an underlying spin-stripe or charge-stripe state. As a result, random strain, ubiquitous in any real crystal, creates both random-field disorder for the nematic degrees of freedom and random-bond disorder for the spin or charge ones. Here, we put forward an Ashkin-Teller model with random Baxter fields to capture the dual role of random strain in nematic systems for which nematicity is a composite order arising from a stripe state. Using Monte Carlo to simulate this random Baxter-field model, we find not only the expected breakup of the system into nematic domains, but also the emergence of nontrivial disorder-promoted magnetic correlations. Such correlations enhance and tie up the fluctuations associated with the two degenerate magnetic stripe states from which nematicity arises, leaving characteristic signatures in the spatial profile of the magnetic domains, in the configurational space of the spin variables, and in the magnetic noise spectrum. We discuss possible experimental manifestations of these effects in iron-pnictide superconductors. Our work establishes the random Baxter-field model as a more complete alternative to the random-field Ising model to describe complex electronic nematic phenomena in the presence of disorder

    On the Nature of Memory and Rejuvenation in Glassy Systems

    Full text link
    The memory effect in a single crystal spin glass (Cu0.92Mn0.08\mathrm{Cu}_{0.92}\mathrm{Mn}_{0.08}) has been measured using 1Hz1 \mathrm{Hz} ac susceptibility techniques over a reduced temperature range of 0.4−0.7 Tg0.4 - 0.7 \, T_g and a model of the memory effect has been developed. A double-waiting-time protocol is carried out where the spin glass is first allowed to age at a temperature below TgT_g, followed by a second aging at a lower temperature after it has fully rejuvenated. The model is based on calculating typical coincidences between the growth of correlated regions at the two temperatures. It accounts for the absolute magnitude of the memory effect as a function of both waiting times and temperatures. The data can be explained by the memory loss being a function of the relative change in the correlated volume at the first waiting temperature because of the growth in the correlations at the second waiting temperature.Comment: 11 pages, 6 figure

    Signatures of Z3_3 Vestigial Potts-nematic order in van der Waals antiferromagnets

    Full text link
    Layered van der Waals magnets have attracted much recent attention as a promising and versatile platform for exploring intrinsic two-dimensional magnetism. Within this broader class, the transition metal phosphorous trichalcogenides MMPX3X_3 stand out as particularly interesting, as they provide a realization of honeycomb lattice magnetism and are known to display a variety of magnetic ordering phenomena as well as superconductivity under pressure. One example, found in a number of different materials, is commensurate single-QQ zigzag antiferromagnetic order, which spontaneously breaks the spatial threefold (C3)(C_3) rotation symmetry of the honeycomb lattice. The breaking of multiple distinct symmetries in the magnetic phase suggests the possibility of a sequence of distinct transitions as a function of temperature, and a resulting intermediate Z3\mathbb{Z}_3-nematic phase which exists as a paramagnetic vestige of zigzag magnetic order -- a scenario known as vestigial ordering. Here, we report the observation of key signatures of vestigial Potts-nematic order in rhombohedral FePSe3_3. By performing linear dichroism imaging measurements -- an ideal probe of rotational symmetry breaking -- we find that the C3C_3 symmetry is already broken above the N\'eel temperature. We show that these observations are explained by a general Ginzburg-Landau model of vestigial nematic order driven by magnetic fluctuations and coupled to residual strain. An analysis of the domain structure as temperature is lowered and a comparison with zigzag-ordered monoclinic FePS3_3 reveals a broader applicability of the Ginzburg-Landau model in the presence of external strain, and firmly establishes the MMPX3X_3 magnets as a new experimental venue for studying the interplay between Potts-nematicity, magnetism and superconductivity.Comment: 6 pages, 4 figures + supplementary materia
    corecore