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Random strain induced correlations in materials with intertwined nematic and magnetic orders

W. Joe Meese ,1 Thomas Vojta ,2 and Rafael M. Fernandes1

1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

(Received 21 December 2021; revised 8 July 2022; accepted 7 September 2022; published 19 September 2022)

Electronic nematicity is rarely observed as an isolated instability of a correlated electron system. Instead, in
iron pnictides and in certain cuprates and heavy-fermion materials, nematicity is intertwined with an underlying
spin-stripe or charge-stripe state. As a result, random strain, ubiquitous in any real crystal, creates both
random-field disorder for the nematic degrees of freedom and random-bond disorder for the spin or charge
ones. Here, we put forward an Ashkin-Teller model with random Baxter fields to capture the dual role of
random strain in nematic systems for which nematicity is a composite order arising from a stripe state. Using
Monte Carlo to simulate this random Baxter-field model, we find not only the expected breakup of the system
into nematic domains, but also the emergence of nontrivial disorder-promoted magnetic correlations. Such
correlations enhance and tie up the fluctuations associated with the two degenerate magnetic stripe states from
which nematicity arises, leaving characteristic signatures in the spatial profile of the magnetic domains, in the
configurational space of the spin variables, and in the magnetic noise spectrum. We discuss possible experimental
manifestations of these effects in iron-pnictide superconductors. Our work establishes the random Baxter-field
model as a more complete alternative to the random-field Ising model to describe complex electronic nematic
phenomena in the presence of disorder.

DOI: 10.1103/PhysRevB.106.115134

I. INTRODUCTION

Even weak lattice disorder and structural inhomogeneity
can substantially alter the properties of electronic ordered
states [1,2]. For instance, pair breaking promoted by local im-
purity scattering strongly reduces the transition temperature of
unconventional superconductors [3–5], and impurity-induced
phase slips can destroy the long-range order in vortex lattices
or incommensurate charge-density waves [6–8]. Because of
the unavoidable coupling of the nematic order parameter to
lattice deformations, electronic nematicity is particularly sen-
sitive to the intrinsic inhomogeneities of the crystal lattice.
Electronic nematic order is characterized by the sponta-
neous breaking of the rotational symmetry of the system
due to electron-electron interactions while the translational
symmetry is preserved [9,10]. For tetragonal systems such
as cuprates, heavy-fermion materials, and iron-based super-
conductors, the experimentally observed nematic order has
an Ising symmetry, associated with choosing one of the
two axes (or one of the two diagonals) of the square basal
plane of the unit cell [11]. Due to the electron-phonon
coupling, the electronic symmetry breaking is accompanied
by a lowering of the tetragonal symmetry of the lattice
which undergoes an orthorhombic distortion [12–16]. Such
a linear coupling between shear strain and the electronic
nematic order parameter renders random strain, which orig-
inates from local lattice defects and impurities, a random
(Ising) field for the nematic order parameter [11]. As a result,
the random-field Ising model (RFIM) has been employed
to model nematic-related phenomena in crystals [17–20].

A hallmark of this widely studied model is the complete
breakup of the Ising ordered ground state into domains,
which takes place for any random-field strength in two-
dimensional (2D) systems and beyond a critical disorder
strength in three-dimensional (3D) systems [21–24]. More
specifically, the RFIM has been invoked to explain puzzling
experimental observations in the local density of states of
underdoped cuprates [25], in the spin-lattice relaxation rate
of iron selenide [26], and in the elastoresistance of doped iron
pnictides [27].

Despite the progress in understanding the interplay be-
tween nematicity and random strain, one important ingredient
has been missing. In many of the tetragonal systems
where it has been observed, nematicity is often inter-
twined with a density-wave type of order that breaks
both rotational and translational symmetries [28,29]. In
the cuprates YBa2Cu3O6+x [30] and La2−xSrxCuO4 [31],
and in BaNi2As2 [32] (a relative of the iron-based su-
perconductors), it is a charge-density wave, whereas in
the heavy-fermion CeAuSb2 [33] and in the iron-arsenides
family [34] (BaFe2As2, LaFeAsO, and NaFeAs), it is a spin-
density wave. In all cases, the density wave tends to be
stripelike, characterized by two degenerate ordering vectors
Q1 and Q2 related by a fourfold rotation. In analogy with
classical liquid crystals, electronic nematicity in these com-
pounds has been proposed to be a vestigial order [29,35] (i.e.,
a partially melted version) of the underlying density wave,
which plays the role of an electronic smectic phase [13,35–
44]. As a result, the nematic order parameter is described as a
composite density-wave order parameter.
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FIG. 1. The fourfold-degenerate stripe-magnetic ground state of
the Ising J1-J2 model on a square lattice. Blue and red sites denote the
A and B sublattices. The magnetic moments point out of the plane.
The horizontal (vertical) stripe configuration, corresponding to the
ordering vector QH = (0, π ) [QV = (π, 0)], corresponds to parallel
(antiparallel) staggered sublattice magnetizations MA and MB. These
states exhibit either a positive or negative nematic order parameter,
defined as the product φ ∝ MAMB. The staggered magnetizations on
the A and B sublattices of the Ising J1-J2 model are in one-to-one
correspondence with the σ and τ Ising variables of the Ashkin-Teller
model. Similarly, the nematic order parameter in the former maps
onto the Baxter variable στ of the latter.

The composite nature of the nematic order parameter
points to a more complex role of random strain that goes
beyond the breakup of long-range order into nematic do-
mains. To see this, consider the iron arsenides, for which
there is strong evidence that nematic order is a vestige of
the stripe-magnetic ground state [45]. The latter has wave
vectors Q1 = (π, 0) and Q2 = (0, π ) and is described by the
staggered magnetizations MA and MB of the two sublattices of
the square lattice, which can be either parallel or antiparallel
to each other (see Fig. 1). The Ising-nematic order parameter
φ in this case is the composite φ = MA · MB [46]. Random
shear strain ε therefore plays a dual role. On the one hand,
it leads to randomness of the magnetic interactions and thus
to random-bond disorder for Mi. On the other hand, it cou-
ples linearly to φ and therefore creates random-field disorder
for the nematic order parameter. Because random-field and
random-bond effects are quite different, and because there is
mutual feedback between the coupled nematic and magnetic
degrees of freedom, a description in terms of the RFIM is
incomplete.

In this paper, we propose and solve an effective model that,
like the RFIM, requires no prior knowledge about microscopic
details of the system but, unlike the RFIM, accounts for the
dual random-field and random-bond role of random strain in
nematic systems for which nematicity is a composite order,
rather than an isolated instability. It consists of the Ashkin-
Teller Hamiltonian in the presence of a random Baxter field,
and is thus dubbed the random Baxter-field model (RBFM):

H = −
∑
〈i j〉

[J (σiσ j + τiτ j ) + Kσiτiσ jτ j] −
∑

i

εiσiτi. (1)

Although the model is based on the mapping of the Ising
J1-J2 model onto the Ashkin-Teller model [47,48], it should
be relevant not only for the case where the primary instabil-
ity is a magnetic stripe state with easy-axis anisotropy, but
also when the primary phase is a commensurate charge-stripe
phase. Here, the σ and τ Ising variables describe the fourfold-
degenerate ground state, consisting of spin-up and spin-down
stripes (or, equivalently, charge-rich and charge-poor stripes)
aligned along the x and y axes (see Fig. 1). The composite ne-
matic order paramer is given by φ = στ , and couples linearly
with the shear strain ε. The two energy scales J and K can be
directly connected to the J1 and J2 exchange constants of the
original J1-J2 model. We note that this approach is different
from and complementary to previous ones where random-
field disorder was included only on the primary charge-stripe
order [35].

We use a combination of Metropolis and replica-exchange
Wang-Landau (WL) Monte Carlo methods to simulate the
RBFM on a square lattice. Since both cuprates and iron pnic-
tides are layered systems with relatively large charge-order
and magnetic anisotropies, such an approximation is reason-
able. Our results not only show a breakup of the system into
nematic domains, as in the RFIM, but they also reveal unusual
magnetic correlations. Importantly, such correlations are com-
pletely absent in the clean case, and arise entirely from the last
term in (1), i.e., from the random strain. The key point is that
while εi completely determines the value of the local nematic
order parameter σiτi (either +1 or −1), it allows two different
sets {σi, τi} of magnetic order parameters (either {+1,+1}
and {−1,−1} or {+1,−1} and {−1,+1}). Consequently, a
particular random strain realization allows multiple {σi, τi}
magnetic configurations; in contrast, the RFIM has a single
ground state for a given random-field realization.

The consequences of the random strain driven magnetic
correlations are multifold. In real space, they cause the system
to also break up into magnetic domains. However, the typical
sizes of the magnetic domains are larger than those of the
nematic domains by a factor of order 2. The disorder-induced
magnetic correlations also leave pronounced signatures in
the joint {σ, τ } distribution in configurational space. In the
clean case, as the temperature is lowered, the shape of the
typical {σ, τ } distribution changes from a circle centered at
the origin to four sharp peaks at the vertices of a square. In
contrast, in the disordered case, there is a wide intermediate
temperature range for which the typical {σ, τ } configurations
form a hollow square shape, indicative of one Ising variable
acquiring a finite value while the other one explores its entire
configuration axis. Compared to the four sharp {σ, τ } peaks
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of the clean case, these enhanced correlations also cause an
unexpected increase of the magnetic susceptibility in the dis-
ordered system. The nematic susceptibility, on the other hand,
is always suppressed with respect to the clean case. This is not
the only effect of random strain on the magnetic and nematic
susceptibility: while their peaks are coincident in the clean
case, they split in the disordered case.

Moreover, nontrivial magnetic correlations also appear in
time domain. In the clean case, the two magnetic variables
fluctuate in a nearly independent fashion, and the correspond-
ing power spectral densities display a low-frequency plateau.
On the other hand, in the disordered case, the magnetic fluc-
tuations are correlated, in that if one of the Ising variables
fluctuates around a nonzero value, the other one must fluctuate
around zero. This results in coherent switching events and in
power spectral densities that show no plateau behavior up to
the very low frequencies probed in our simulations. Finally,
we discuss possible experimental manifestations of the vari-
ous random strain induced effects on the magnetic degrees of
freedom.

The structure of this paper is as follows. We first motivate
and introduce the RBFM in Sec. II, as well as discuss some
of its qualitative properties in two dimensions. In Sec. III,
we introduce our main replica-exchange WL simulation and
discuss the disorder-averaged thermodynamic behavior seen
in the RBFM. Additionally, we compare our results for the
RBFM to our simulations of the RFIM. Following this, in
Sec. IV, we discuss the time dependence of the fluctuations
in the RBFM when we impose relaxational dynamics on the
system. Finally, we summarize and discuss the implications of
our results in Sec. V. Appendix A derives the low-energy map-
ping that gives rise to our RBFM, and Appendix B presents the
technical details of our Monte Carlo simulations.

II. RANDOM BAXTER-FIELD ASHKIN-TELLER
MODEL (RBFM)

A. Connection with the iron pnictides and the J1-J2 model

The low-energy properties of the magnetic and nematic
phases of the iron pnictides are often described by means of
the J1-J2 model [36,37,39,49]. The J1-J2 Hamiltonian is given
by

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j, (2)

where 〈i j〉 and 〈〈i j〉〉 denote nearest-neighbor and next-
nearest-neighbor sites i and j, respectively. The spins {Si} are
classical O(n) vectors that sit on a square lattice and interact
with each other via the nearest-neighbor and next-nearest-
neighbor exchange interactions J1 and J2.

Because the iron-pnictide compounds are metallic, the itin-
erant electrons play an important role, which is not captured
by the J1-J2 model [40]. Nevertheless, the J1-J2 model can
still be used as an effective low-energy model to gain insight
into the magnetic and nematic properties of the iron pnictides.
Indeed, the phase diagram of this model contains both a stripe-
magnetic phase and a vestigial nematic phase [46].

While most studies in the pnictides have focused on
the Heisenberg case (n = 3), the spins in these materials

are typically confined to a single axis due to spin-orbit
coupling [50,51]. Thus, hereafter we focus on the Ising limit
(n = 1). The fourfold-degenerate ground state for the Ising
case, shown in Fig. 1, consists of spin-up and spin-down
stripes oriented parallel to either the x axis or the y axis.

To understand this degeneracy, we note that in the J1-J2

model applied to iron pnictides, the next-nearest-neighbor
exchange J2 is always antiferromagnetic while the nearest-
neighbor exchange J1 can be generally antiferromagnetic
or ferromagnetic, When J2/|J1| = 0, the ground state is
either Néel antiferromagnetic or ferromagnetic depending
on whether J1 > 0 or J1 < 0, respectively. In the opposite
limit, when J2/|J1| → ∞, the ground state is stripe anti-
ferromagnetic as the next-nearest-neighboring spins favor
antiferromagnetic alignment, rendering the nearest neighbors
on the two interpenetrating sublattices shown in Fig. 1 inde-
pendent of one another.1 When J2 and |J1| are comparable,
there is competition between the J1 and J2 terms, as the J1 term
favors ferromagnetic alignment of next-nearest-neighboring
spins, whereas the J2 term prefers these neighbors to have
antiferromagnetic alignment. For this reason, the model is
said to be frustrated.

The transition from the Néel or ferromagnetic ground state
to the stripe-ordered ground state occurs at J2/|J1| = 1

2 . We
therefore focus on the range J2/|J1| > 1

2 . In this regime, the
Hamiltonian in Eq. (1) can be written as two antiferromag-
netic Ising models on the A and B sublattices of the square
lattice coupled by the J1 term. Therefore, the stripe-magnetic
order parameter has two components comprised of the stag-
gered sublattice magnetizations, given by

MA,B =
NS∑

(ix,iy )∈A,B

(−1)ix+iy Si. (3)

In the equation above, the summation runs over (ix, iy) integer
pairs that index the sites that lie in either the A or B sublattice,
each containing half of the total number of spins (NS = N/2).

The nematic order parameter φ ∝ MAMB is composite in
terms of the primary magnetic order parameters Mi. It is
Ising nematic because the sublattice magnetizations can be
either aligned (φ > 0) or antialigned (φ < 0). These two
cases represent the horizontal (φ > 0) and vertical (φ < 0)
stripe configurations, as shown in Fig. 1. In the Ising J1-J2

model [48], long-range nematic order appears simultaneously
with the primary stripe-magnetic phase, i.e., there is no sepa-
rate nematic phase.2

1While in the Ising case the spins are collinear by construction,
for O(n > 1) realizations of the J1-J2 model, fluctuations give rise
to a biquadratic term in the Hamiltonian that lock the staggered
magnetizations of the two sublattices to be collinear [46], giving rise
to a stripe-magnetic state similar to that in Fig. 1.

2In the J1-J2 model with classical vector spins, there is generally a
nematic phase between the high-temperature paramagnetic phase and
the ground-state stripe-magnetic phase [37,40]. This phase is char-
acterized as one with 〈MA · MB〉 �= 0 despite that 〈MA〉 = 〈MB〉 =
0. In purely two-dimensional systems, the stripe-magnetic phase
only exists at T = 0 by the Mermin-Wagner theorem. However, the
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The stripe configurations lower the tetragonal symmetry
of the lattice to orthorhombic since bonds along the x axis
connect parallel (antiparallel) spins, whereas bonds along
the y axis connect antiparallel (parallel) spins. Due to mag-
netoelastic coupling, the nematic order parameter couples
bilinearly to strain ε in the Ginzburg-Landau free energy
εφ ∝ ε(MAMB) [13–15]. Here, the strain takes on the form

ε ≡ ∂xux − ∂yuy, (4)

with u = (ux, uy) denoting the lattice displacement.

B. Mapping onto the Ashkin-Teller model

While the Ising J1-J2 model captures the onset of coupled
nematic and magnetic orders, this model’s inherent frustration
between the nearest- and next-nearest-neighboring interac-
tions makes it difficult to be simulated numerically in the
presence of disorder. Given that we are ultimately interested
in understanding the effects caused by random disorder, which
introduces its own set of frustrated interactions, we make
use of a low-energy mapping that exists between the Ising
J1-J2 model and the Ashkin-Teller model, the latter of which
experiences no frustration in the absence of disorder.

The existence of a fourfold-degenerate ground state sug-
gests that the properties of the Ising J1-J2 model may be
captured by a model with Z4 symmetry. That this is indeed
the case was shown in Refs. [47,48], which numerically
determined the phase diagram of the Ising J1-J2 model. It
was found that for 1

2 < J2/|J1| � 0.67, there is a first-order
transition from a paramagnetic phase into a stripe phase,
whereas for J2/|J1| � 0.67, the system undergoes a single
second-order phase transition. Moreover, in the J2/|J1| →
∞ limit, the transition is in the Ising universality class,
whereas for J2/|J1| ≈ 0.67, the transition has the four-state
Potts universality. These two points are connected by a line of
second-order transitions that displays weak universality, i.e.,
only the anomalous exponent η = 1

4 is universal while the
others depend on the ratio J2/|J1| [47,48,52].3 This is the same
behavior displayed by the 2D Ashkin-Teller model (ATM),
which is defined by

H0 = −
∑
〈i j〉

[J (σiσ j + τiτ j ) + Kσiτiσ jτ j]. (5)

In the expression above, there are two Ising spins at every
site i, denoted by σi and τi. These spins are also known
as the magnetic “colors” of the model. The Ising exchange
J is ferromagnetic and the strength of the Baxter exchange
coupling K represents the degree to which the two Ising
magnetic colors are correlated. When K = 0, the model cor-
responds to two copies of the Ising model (like the Ising J1-J2

model when J2/|J1| → ∞) whereas when K = J , it reduces

nematic order persists at finite temperature since it breaks a discrete
symmetry instead of a continuous one.

3The conjugate field exponent δ is also universal for systems that
exhibit weak universality, but one can think of it as being fixed by its
relation to the anomalous exponent through hyperscaling.

FIG. 2. Two-dimensional phase diagram of the Ashkin-Teller
model along the temperature T and Baxter coupling K axes, accord-
ing to Ref. [53]. A critical line separates the paramagnetic phase
from the Baxter phase, along which only one critical exponent is
universal. The points displaying Ising (K = 0) and four-state Potts
(K = J ) universality are indicated, as is the mapping of the Ising
J1-J2 model with J2/|J1| � 0.67 onto the 0 � K/J � 1 region of the
phase diagram established in Refs. [47,48].

to the four-state Potts model (like the Ising J1-J2 model when
J2/|J1| ≈ 0.67).

In fact, the results of Refs. [47,48] established a one-to-one
correspondence between the ATM with 0 � K/J � 1 and the
Ising J1-J2 model with J2/|J1| � 0.67, such that K = 0 cor-
responds to J2/|J1| → ∞ and K = J , to J2/|J1| ≈ 0.67. The
mapping takes on the following form:

〈MA〉 ↔ 〈σ 〉,
〈MB〉 ↔ 〈τ 〉,
〈φ〉 ↔ 〈στ 〉.

(6)

and is shown in Fig. 2 superimposed to the (K/J, T/J ) phase
diagram of the ATM [53]. Along the interval K/J ∈ (−1, 1],
the ground state of the ATM is fourfold degenerate, and the
system cools from a high-temperature paramagnetic phase,
characterized by 〈σ 〉 = 〈τ 〉 = 〈στ 〉 = 0, into the so-called
Baxter phase, which displays ferromagnetic order in both
σ and τ such that 〈σ 〉 = ±〈τ 〉. Note that the Baxter phase
also displays ferrolike order in the composite Baxter variable
〈στ 〉, which corresponds to the nematic order parameter of
the Ising J1-J2 model. Therefore, in this model, the nematic
(i.e., Baxter) and magnetic transitions happen simultaneously
via a second-order transition. This is quite different from
the large-n solution of the O(n) J1-J2 model, in which the
two transitions are either split or simultaneous and first or-
der [37,40]. The critical line separating the paramagnetic and
Baxter phases is known exactly [48]:

sinh

(
2J

Tc

)
= exp

(
−2K

Tc

)
. (7)

As discussed above, along this line, only the anomalous
exponent is universal, η = 1

4 , while the values of the other
exponents (except for the exponent δ, given by δ = d+2−η

d−2+η
=

15) depend on the ratio K/J . We note that ordered phases
exist outside the interval K/J ∈ [−1, 1] [53]. For instance,
the Baxter phase for K/J > 1 is preceded by a phase in
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which 〈στ 〉 �= 0 while 〈σ 〉 = 〈τ 〉 = 0. Such a behavior is not
observed in the Ising J1-J2 model. Hereafter, we focus only
on the regime K/J ∈ (0, 1) of the ATM, as it maps onto the
J2/|J1| � 0.67 regime of the Ising J1-J2 model.

C. Random strain and the emergence of two length scales

The role that structural disorder plays on the intertwined
magnetic and nematic phases represents a new type of
quenched disorder in statistical physics. Random strains in
the lattice appear as a random-field disorder for the com-
posite nematic degrees of freedom, whereas they appear as
a random-bond disorder for the primary magnetic degrees
of freedom. Typically, random-field disorder is more acute
than random-bond disorder. Indeed, even a weak random field
locally breaks symmetries of the Hamiltonian and can lead to
domain breakup at T = 0 [21]. On the other hand, the sys-
tem’s exchange constant may overcome the effects of a weak
bond disorder [1,2,54]. Random strain disorder is different
than either the pure random-field or the pure random-bond
disorder because the interplay between the magnetic and ne-
matic degrees of freedom allows for the two types of disorder
effects to feed back onto each other.

Random strain disorder, denoted by the local variable εi,
appears as an onsite term through the bilinear coupling to
the Ising-nematic variable of the problem. For an isolated
Ising-nematic instability, as discussed in Refs. [17–20], this
results in the random-field Ising-model (RFIM). In the case of
the ATM considered here, random strain disorder maps onto
a random Baxter field, as the nematic order parameter is the
composite στ (see Appendix A). This leads us to the random
Baxter-field Ashkin-Teller model (RBFM), presented in Eq. (1)
and repeated here for convenience:

H = −
∑
〈i j〉

[J (σiσ j + τiτ j ) + Kσiτiσ jτ j] −
∑

i

εiσiτi. (8)

In our simulations, disorder is taken to be spatially uncorre-
lated and sampled from a box distribution:

ρ(εi ) =
{ 1

4ε
, εi ∈ [−2ε, 2ε]

0, otherwise.
(9)

Consequently, ε denotes the typical disorder strength. We
note that while the disorder term in Eq. (8) acts only as a
random field for the Baxter variable στ , a random-bond term
is generated by fluctuations (e.g., in the renormalization-group
flow) for the individual magnetic variables σ and τ . Thus, the
RBFM captures the feedback that exists between the random-
field and random-bond effects promoted by random strain
disorder in the iron pnictides.

Following the Imry-Ma-Binder analysis [21,22], the Baxter
phase of the clean 2D ATM, subject to the random Baxter
field in Eq. (8), will break apart into domains even at T = 0.
The length scale at which this occurs is given by the breakup
length

�b ∼ exp

[
C

(
J + K

ε

)2]
, (10)

that grows exponentially with the ratio between the “total”
exchange and the disorder strength. In the expression above, C

is a constant of order one. Thus, we do not expect long-range
order at any temperature in the thermodynamic limit.

Because the random Baxter field acts on an Ising compos-
ite variable, the domain breakup occurs specifically for the
composite variable. This means domain walls form when the
product στ changes value. This is achieved when either σ or
τ changes value, but not if both do. At first sight, this seems
to imply that one magnetic order parameter could maintain
long-range order while the other one breaks up to satisfy the
constraints of the random Baxter field. However, such a state
is degenerate with one where both orders eventually break
apart, resulting in magnetic domain breakup as well. Thus,
all long-range order is lost in the RBFM at T = 0. While we
argue that the domain breakup occurs for the RBFM, we note
that nematic, and therefore magnetic, domain breakup was
also seen in the diluted Ising J1-J2 model in Refs. [55,56], due
to the same low-energy physics created by the random strain
disorder.

What makes this model display a richer and more complex
behavior than the RFIM is the fact that disorder introduces
nontrivial correlations between σ and τ . Consider, for ex-
ample, the sizes of the magnetic domains compared to the
nematic domains. In the RFIM, a single disorder configuration
should fix the ground-state configuration [57]. In the RBFM,
meanwhile, because only one of the two magnetic variables
can change at a time across a nematic domain wall, the typical
breakup size of the magnetic domains is larger than the ne-
matic domains. This introduces a second breakup length scale
into the problem, which is not seen in the RFIM.

Additionally, there is a potentially large degeneracy asso-
ciated with the number of ways one can satisfy the disorder
constraint with multiple magnetic domain configurations.
This is sketched in Fig. 3, where we schematically show
identical Baxter domain breakup associated two different σ

and τ domain configurations. Therefore, these two different
magnetic states are degenerate. The residual degeneracy ex-
pected in the ground state of the RBFM contrasts with that of
the RFIM, which is expected to be unique [57]. This ground
state degeneracy is attributed to the fact that, because disorder
locally favors a value of the composite Baxter variable, it
leaves intact a twofold symmetry of a system.

To assess the difference in domain breakup sizes more
clearly, we show the results of an adaptive simulated anneal-
ing run of Eq. (8) for a system of linear size L = 400 with a
final temperature of T = 0.269 J , Baxter coupling K = 0, and
a single disorder configuration with strength ε = J . Details of
our simulated annealing regimen are given in Appendix B 1.
The final spin values are plotted in Fig. 4, with the yellow
(light) and blue (dark) regions representing Ising domains
with value ±1. It is clear that the typical nematic domain size
is smaller than the typical magnetic domain size.

To make a more quantitative comparison, the spin auto-
correlation functions A for various temperatures during the
simulated annealing regimen are shown in Fig. 5. This quan-
tity is defined by

A[σ ; r] ≡ Av

{
1

L2

∑
x

(σr+x − σ )(σx − σ )

}
r�|r|<r+1

(11)
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FIG. 3. Each random Baxter-field configuration fixes a Baxter domain configuration, as shown in the central view of the two-dimensional
lattice in this sketch (purple). In both panels, the Baxter (στ ) domain configuration is identical, but the magnetic domains σ (red) and τ (blue)
are different, as shown by the top and bottom views, respectively.

for the σ field, where r = r(cos θ, sin θ ) and σ is the net
σ -magnetic moment per site. The notation Av{Q}ς denotes an
average over the values of the quantity Q that satisfy condition
ς . Similar expressions hold for A[τ ; r] and A[στ ; r]. The
autocorrelation functions are nearly linear at short distances
in the linear-logarithm plot of Fig. 5, indicating that A(r) ∼
e−r/R for small distances r. The vertical dashed lines denote
the distances R where the spin autocorrelation functions equal
e−1 at the lowest temperature measured, corresponding to the
domains shown in Fig. 4. It is clear that Rστ is a factor of 2–3
smaller than Rσ , Rτ . Interestingly, as the system is annealed
and the thermal fluctuations are frozen out, the autocorrelation
functions gradually approach the lowest-temperature values,
indicating the existence of temperature-independent length

scales for the Baxter and magnetic variables. These results,
although typical, are for a single disorder configuration. In
what follows, we quantitatively study the thermodynamics
and relaxational dynamics of the RBFM after averaging over
many different disorder configurations.

III. THERMODYNAMICS OF THE RANDOM
BAXTER-FIELD ASHKIN-TELLER MODEL

A. Simulation and observables

We performed replica-exchange Wang-Landau (WL)
Monte Carlo simulations to obtain the thermodynamics of
the RBFM defined in Eq. (8). This method of simulation,
as opposed to the Metropolis, heat-bath, or cluster algo-

FIG. 4. Snapshots of the low-temperature domain structure generated by a simulated annealing run of Eq. (8) for a single disorder
configuration with K = 0, ε = J , and L = 400. The Baxter domains in the στ panel are seen to be typically smaller than the magnetic domains
in the σ and τ panels. The yellow (light) regions are those for which the field values are +1, whereas the blue (dark) regions correspond to
−1. The red lines highlight the domain walls.
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FIG. 5. Isotropic spin autocorrelation functions A(r) of snap-
shots of the spin configurations taken after equilibration at various
temperatures during simulated annealing. These autocorrelations are
of the (a) σ , (b) Baxter στ , and (c) τ degrees of freedom and are mea-
sured with respect to the radial coordinate r = √

x2 + y2. The vertical
lines are positioned at the radius R where A(R) = e−1 at the lowest
temperature probed.

rithms, circumvents slowing down near critical points and at
low temperatures. Both the Metropolis and heat-bath algo-
rithms suffer from critical (supercritical) slowing down near
second-order (first-order) transitions due to the diverging
correlation lengths (phase coexistence). Cluster algorithms,
on the other hand, are not suitable for problems with
random-field disorder. The WL algorithm is a temperature-
independent approach that computes the microcanonical
density of states [58,59]. Thermodynamic quantities can be
obtained directly from the density of states. As a result, be-
cause temperature is not involved, the WL algorithm is free
from critical or supercritical slowing down.

We employ the massively parallel replica-exchange WL
algorithm to help the simulations converge in the presence of a
rugged energy landscape [60–62]. The details of the algorithm
are given in Appendix B. After the thermodynamic properties
from each disorder configuration are obtained, we average
over all configurations to obtain the mean value and standard
errors for each observable.

Our analysis focuses on the specific-heat and uniform
susceptibilities. We are primarily interested in measurements
at a fixed system size of L = 40 and two different Bax-
ter couplings: a finite Baxter value of K = 0.5 J and K =
0 (Ising-criticality point). We vary the random Baxter-field

strength ε in Eq. (9) to study how the two different breakup
length scales affect the disorder-averaged thermodynamics.
All energy values are given in units of J and our results,
when plotted as functions of temperature, are shown within
one standard error represented by a shaded region about the
mean. As thermodynamic quantities can be obtained rapidly
from the simulated density of states for arbitrary temperatures
within the WL procedure, we can achieve a high-temperature
resolution. In most graphs, the temperature axis has a resolu-
tion of 0.001 J . When appropriate, the clean-system transition
temperature calculated from Eq. (7) will be shown as well and
denoted as T (0)

c .
The specific heat for a single disorder configuration is

calculated as

cV = 1

NT 2
(〈E2〉 − 〈E〉2), (12)

where E is the energy of the system, T is the temperature,
N = L2 is the total number of lattice sites, and 〈·〉 represents
a canonical thermodynamic average. Denoting the disorder
average (see Appendix B 4 for details) with double brackets
[[·]], the disorder-averaged specific heat is then simply

[[cV ]] = 1

NT 2
[[〈E2〉 − 〈E〉2]]. (13)

The number of disorder configurations averaged for each case
ranges from 64 to 246; details are shown in Tables I and II in
Appendix B 4.

There are four susceptibilities of interest in the problem:
one for each magnetic variable σ and τ , one for the composite
Baxter variable φ representing the nematicity, and one for the
quadrature ζ of the two Ising variables. We define each of
these quantities as

σ ≡ 1

N

N∑
i=1

σi, (14)

τ ≡ 1

N

N∑
i=1

τi, (15)

φ ≡ 1

N

N∑
i=1

σiτi, (16)

ζ ≡
√

σ 2 + τ 2. (17)

When there is no risk of confusion, we refer to the Baxter
variable as στ . Each of these observables has a uniform sus-
ceptibility given by

χα ≡ N

T
(〈α2〉 − 〈|α|〉2) (18)

for the observable α taken for a single disorder configuration.
Disorder averaging follows the same approach as that for the
specific heat.

B. Finite Baxter coupling

The specific-heat curves for an L = 40 and K = 0.5 J sys-
tem and for different values of the disorder strength ε are
shown in Fig. 6(a). The clean case (ε = 0) is shown for com-
parison. Increasing the disorder strength leads to a suppression
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FIG. 6. Temperature dependence of (a) the specific-heat cV and
(b)–(e) the uniform susceptibilities of the RBFM for K = 0.5 J and
linear size L = 40 at different disorder strengths ε. The susceptibili-
ties are labeled as follows: (b) σ susceptibility χσ , (c) τ susceptibility
χτ , (d) the Baxter susceptibility χστ , and (e) the quadrature suscepti-
bility χζ .

of the specific heat and to a shift in the peak position to-
wards lower temperatures. These effects are due to the domain
breakup length scale given by Eq. (10), which decreases with
increasing disorder.

This behavior is confirmed by Fig. 7, which contrasts
the specific-heat behavior between a clean and a disordered

FIG. 7. Comparison of the specific heat cV of (a) the clean system
(ε = 0) and (b) the disordered system (ε = 0.5 J ) with increasing
system size L. The Baxter coupling for both cases was set to K =
0.5 J .

FIG. 8. (a) Peak susceptibility temperature Tχ and (b) peak sus-
ceptibility max χ as a function of disorder strength ε for K = 0.5 J
and L = 40. The shaded regions represent Tχ and maxχ to within a
single error bar. The lines are guides to the eye.

system with ε = 0.5 J as the system size L increases. The
peak for the clean case increases and sharpens monotonically,
with its position approaching T (0)

c . Meanwhile, the peak in
the disordered case saturates and shifts towards T = 0. This
provides further evidence that the random Baxter field kills
the thermodynamic phase transition of the clean ATM.

Figures 6(b)–6(e) show the uniform susceptibilities for
the observables defined in Eqs. (14)–(17). Like the specific
heat, the Baxter susceptibility χστ broadens and its peak is
suppressed. A similar behavior is observed for the quadrature
susceptibility χζ . However, the peak in the two magnetic
susceptibilities χσ and χτ are nonmonotonic functions of dis-
order. They actually increase for sufficiently large disorder
strength, indicating an increase in the magnetic fluctuations
due to the random Baxter field. The behavior of each sus-
ceptibility’s peak value (max χ ) and peak temperature (Tχ )
is shown in Fig. 8 as a function of the disorder strength.
We propose that the enhancement of max χ starts when the
disorder strength reaches values for which the breakup length
�b becomes comparable with or smaller than the system size
L, such that the random Baxter-field effects become more
pronounced. We will come back to this point in the next
section.

In Figs. 9 and 10, we probe the (σ, τ ) configurational space
by showing the joint distribution of the two spin quantities σ

and τ for both the clean case and the case with strong disorder
(ε = 0.5 J ), respectively. These plots thus give the density
of σ and τ fluctuations. The highest temperature in each
figure (bottom right panel) was chosen to be the temperature
where the magnetic susceptibilities in Fig. 6 start to separate
(T ≈ 3.2 J ). The temperatures are measured in units of the
peak χσ,τ temperature, which we denote by Tχ .

By comparing these figures, one sees that the distributions
are nearly identical at high temperatures, consisting of broad
peaks centered at the origin. However, upon cooling towards
Tχ , the clean and disordered distributions behave very differ-
ently. In the clean case, the correlation between the σ and τ

variables enforced by the Baxter exchange K results in peaks
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FIG. 9. Relative thermodynamic probabilities of (σ, τ ) states for
the clean case with K = 0.5 J . The central temperature corresponds
to the peak χσ,τ position, Tχ = 3.031 J . The highest temperature is
T = 3.2 J .

along the diagonals in the (σ, τ ) plane, which become sharper
as the temperature is lowered. Meanwhile, in the disordered
case, a nearly uniform box distribution appears, as shown
in the T = 1.022 Tχ panel. This indicates that the σ and τ

variables are nearly uncorrelated since their joint distribution
is a simple product of two uniform distributions in σ and τ .
This can be interpreted as if the Baxter exchange is weakened
by the random Baxter field, enlarging the symmetry of the
magnetic fluctuations relative to the clean system. Moreover,
it is consistent with the disorder-promoted enhancement of χσ

and χτ in Fig. 6.
Upon lowering the temperature below Tχ , we see that in

the clean case (Fig. 9), the magnetic variables cluster in four
peaks corresponding to the four ground states of the ATM. In
contrast, when the disorder is present (Fig. 10), a squarelike
distribution emerges with empty states in its interior, as shown
in the T = 0.978Tχ panel. Such a joint distribution cannot be

FIG. 10. Relative thermodynamic probabilities of (σ, τ ) states
with K = 0.5 J and a random Baxter-field strength of ε = 0.5 J .
The central temperature corresponds to the peak χσ,τ position, Tχ =
2.968 J . The highest temperature is T = 3.2 J , which is the same as
Fig. 9.

described as the product of two independent distributions, like
it could for the case of the uniform square. Instead, they corre-
spond to uniform fluctuations of one of the magnetic variables
while the other acquires a constant finite value. Therefore, the
random Baxter field induces new correlations between σ and
τ . The conclusion we draw from these thermodynamic prob-
ability distributions is that disorder increases the fluctuations
of the magnetic degrees of freedom while correlating them in
a distinct way as compared to the clean case.

C. Zero Baxter coupling

Our numerical results for systems of size L = 40 in
Fig. 8(b) show that when the disorder strength becomes
comparable to the Baxter exchange scale K/J , the magnetic
fluctuations grow. To shed light on this result, and to disen-
tangle the correlations between σ and τ induced by disorder
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FIG. 11. Temperature dependence of (a) the specific-heat cV and
(b)–(e) the uniform susceptibilities (χ ) of the RBFM for K = 0 and
linear size L = 40 at different disorder strengths ε. The susceptibili-
ties are labeled as follows: (b) σ susceptibility χσ , (c) τ susceptibility
χτ , (d) the Baxter susceptibility χστ , and (e) the quadrature suscepti-
bility χζ .

(shown in Fig. 10) from the correlations enforced by K (shown
in Fig. 9), we simulate the K = 0 RBFM. It corresponds to
two clean Ising models coupled to each other only locally by
the random Baxter field.

The specific heat for the RBFM with linear size L = 40 and
K = 0 is shown in Fig. 11(a). While the specific-heat peak is
suppressed with increasing disorder, it stays essentially at the
clean transition temperature T (0)

c of the 2D Ising model. This
contrasts with the K = 0.5 J case [Fig. 6(a)], where the peak
position shifts to lower temperatures.

On the other hand, the uniform susceptibilities in
Figs. 11(b)–11(e) for K = 0 show a qualitatively similar be-
havior with increasing disorder as they did for K = 0.5 J .
Quantitatively, however, the magnetic fluctuations overcome
the clean-system susceptibility for smaller ε values, as shown
in the plots of the susceptibility’s peak value (max χ ) and
peak temperature (Tχ ) in Fig. 12. This is consistent with the
breakup length �b in Eq. (10) being suppressed in the K = 0
case, thus reaching the system’s size L for smaller disorder
strength values than in the K = 0.5J case. We also note that,
unlike the K = 0.5 J case, the Baxter fluctuations eventually
exceed the clean system’s fluctuations at large enough disor-
der values.

Figure 13 shows the relative thermodynamic probability
of a (σ, τ ) state for K = 0 and ε = 0, while the disordered

FIG. 12. (a) Peak susceptibility temperature Tχ , and (b) peak
susceptibility max χ as a function of disorder strength ε for K = 0
and L = 40. The shaded regions represent Tχ and maxχ to within a
single error bar. The lines are guides to the eye.

case with ε = 0.5 J is shown in Fig. 14. The distribution at
peak temperature T/Tχ = 1 for the clean system in Fig. 13
is qualitatively similar to that in Fig. 10 for the disordered
system with K = ε = 0.5 J . Indeed, both cases show a lack of
statistical weight near the paramagnetic state (σ, τ ) = (0, 0).
Moreover, at temperatures just above Tχ , both distributions
have a nearly uniform-box structure, indicating that σ and τ

are nearly uncorrelated. These comparisons support the notion
that the random Baxter field effectively renormalizes the finite
Baxter coupling down.

This is not the only effect of the random Baxter field. Com-
paring Fig. 14, which refers to the disordered system (K =
0, ε = 0.5 J ), with Fig. 10, which refers to the disordered sys-
tem with finite Baxter coupling (K = 0.5 J, ε = 0.5 J ), the
emergence of disorder-induced correlations between σ and τ

near Tχ is much more transparent in the former. Specifically,
as the system cools down from the high-temperature param-
agnetic phase, the statistical weight moves radially away from
the paramagnetic state and eventually forms a hollow square-
like shape, which is sharper than the similar hollow-square
shape in Fig. 10 for K = 0.5 J . Once again, this squarelike
joint distribution cannot be factorized into two separate distri-
butions of σ and τ , and it is absent completely in the clean
case with K = 0. This means that the random Baxter field
introduces correlations between the magnetic variables. Along
each side of the squarelike distribution, one of the magnetic
variables is fixed at some value, while the other thermally
fluctuates. This behavior satisfies the random Baxter-field
constraint imposing nematic domain breakup along each side
of the squarelike distribution. For example, along the upper
and lower sides of the square, the average of the στ order
parameter vanishes because the average σ order parameter
does, despite the fact that the average τ order parameter does
not.

D. Comparison with the random-field Ising model

As discussed in the Introduction, while the RBFM de-
scribes the impact of random strain on composite nematicity
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FIG. 13. Relative thermodynamic probabilities of (σ, τ ) states
for the clean case for K = 0. The central temperature corresponds
to the peak χσ,τ position, Tχ = 2.319 J . The highest temperature is
T = 2.6 J .

arising from an underlying magnetic- and charge-stripe order,
the RFIM provides a suitable framework to describe the case
in which nematicity is a primary instability of the system. It
is therefore valuable to compare the properties of the RBFM
with those of the RFIM, particularly when K = 0, since in
this case the clean version of the RBFM belongs to the Ising
universality class, similarly to the clean version of the RFIM.
On the one hand, the RBFM displays the hallmark feature
of the RFIM: the breakup of long-range nematic order into
nematic domains. On the other hand, some of the thermody-
namic properties of the RBFM differ from those of the RFIM.

Consider, for instance, the specific heat and the magnetic
susceptibility for an L = 40 RFIM shown in Fig. 15, which
we obtained from our replica-exchange WL simulation. The
peaks of both cV and χσ are suppressed and the corresponding
peak temperatures shift towards T = 0. In the RBFM for K =
0, as shown in Fig. 11, the only thermodynamic quantities

FIG. 14. Relative thermodynamic probabilities of (σ, τ ) states
for K = 0 with ε = 0.5 J . The central temperature corresponds to
the peak χσ,τ position, Tχ = 2.129 J . The highest temperature is
T = 2.6 J as it is in Fig. 13.

that share qualitative similarities to those of the RFIM are
the Baxter and quadrature susceptibilities (χστ and χζ ). The
magnetic susceptibilities (χσ and χτ ) and, more importantly,
the specific heat cV are different. Thus, the disorder physics
in the RBFM must include effects with no counterpart in the
RFIM.

To further illuminate this issue, we rewrite the RBFM
Hamiltonian in Eq. (8) in terms of the local Baxter Ising
variable φi = σiτi:

H = −J
∑
〈i j〉

σiσ j − K
∑
〈i j〉

φiφ j −
∑

i

εiφi − J
∑
〈i j〉

φiφ jσiσ j .

(19)

Written in this way, the RBFM Hamiltonian takes the form of
a clean Ising model (IM) in σ coupled to a RFIM in φ through
a four-spin operator. It is this four-spin operator that creates
the correlations in the magnetic variables and gives rise to
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FIG. 15. Disorder-averaged thermodynamic quantities of the
RFIM with linear size L = 40, measured as functions of temperature
T , for various random-field strengths ε. (a) The specific heat cV .
(b) The magnetic susceptibility χσ .

effects beyond the RFIM. Such an operator is particularly
interesting because it effectively generates a bond-dependent
exchange for both the σ IM and the φ RFIM compo-
nents of the RBFM. The effective σ exchange is given by
J (σ )

i j ≡ −J (1 + φiφ j ) which is ferromagnetic when the bond
connects Baxter variables in the same domain with φiφ j = 1.
However, when the bond is across a Baxter domain wall such
that φiφ j = −1, then J (σ )

i j = 0, i.e., the magnetic degrees of
freedom separated by this bond are independent. This again
illustrates that domain breakup in the Baxter variable nec-
essarily leads to domain breakup in the magnetic variables,
and shows how the magnetic breakup length is larger than the
Baxter one.

Conversely, the effective Baxter exchange is given by
J (φ)

i j ≡ −K − Jσiσ j . Thus, if neighboring magnetic spins be-
long to the same domain with σiσ j = 1, then the Ising Baxter
degrees of freedom experience a ferromagnetic exchange.
Meanwhile, if the neighboring magnetic spins are separated
by a magnetic domain wall such that σiσ j = −1, then the Ising
Baxter degrees of freedom experience an antiferromagnetic
exchange. This additional frustration for the Baxter variables
leads to more breakup, providing a feedback mechanism on
the composite degrees of freedom that is lacking in the con-
ventional application of the RFIM. But these effects only
become clear when both the φ and σ breakups are present.

To test this idea, Fig. 16 shows the evolution of the specific
heat of the RBFM as the disorder strength is increased, and
compares it to that of a clean IM, the RFIM, and the sum
of the clean IM and the RFIM. For small disorder strengths,
there is barely any Baxter domain breakup, which explains
the small difference between the RBFM and the sum of the
two Ising models. As the disorder strength increases, however,
and domain breakup in both variables is more common, the
splitting of the RBFM curve from the curves obtained from
the sum of a clean IM and a RFIM becomes clearer. While
some of the behavior of the RBFM specific heat is captured by
the sum, such as the frozen peak temperature of the specific
heat and the bump at low T , the suppression of the specific-

FIG. 16. Comparison of the RFIM and the RBFM with L = 40
and K = 0 over various disorder strengths. These plots show the
specific heat cV as a function of temperature T for the clean Ising
model (clean IM); the RFIM at ε = ε∗, where ε∗ is a numerical
value defined in each figure; the sum of the specific heats of the
clean IM and the RFIM (clean IM + RFIM); and the RBFM at
zero Baxter coupling. (a) ε∗ = 0.0 J , (b) ε∗ = 0.2 J , (c) ε∗ = 0.5 J ,
and (d) ε∗ = 0.8 J . In the clean case (a), the Ashkin-Teller model
is equivalent to two clean Ising models, as shown by the complete
agreement between the green dotted curve and the red dashed-dotted
curve.

heat peak is not. This suppression indeed highlights the role
that the random Baxter field has in correlating the primary
magnetic degrees of freedom in a way absent in the RFIM.

IV. RELAXATIONAL DYNAMICS OF THE RANDOM
BAXTER-FIELD ASHKIN-TELLER MODEL

A. Dynamical simulation details

Our replica-exchange WL results reveal that for strong
enough disorder, when the Baxter coupling is effectively sup-
pressed, the two magnetic variables remain coupled to each
other through the random Baxter field. As shown in Fig. 14,
these disorder-induced correlations force only one magnetic
variable to fluctuate at a time, enlarging the magnetic breakup
lengths over the nematic one.

The two domain breakup length scales for the magnetic
and Baxter domains should influence their dynamics as well.
For example, if one were to assume relaxational domain dy-
namics of the Arrhenius law form, then the typical frequency
of switching events would scale as exp(−λ�/T ), where λ is
the surface tension of a domain wall and � is the domain size.
Then, when two typical domain sizes exist in the problem,
there should be two typical frequencies, with the faster arising
from the smaller Baxter domains and the slower one from the
larger magnetic domains. To verify this expectation, we sim-
ulate here random strain effects on the relaxational dynamics
of the RBFM.

Metropolis Monte Carlo [63] simulations were run for the
RBFM to simulate the relaxational dynamics of the magnetic
fluctuations for the K = 0 case. The Metropolis algorithm
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simulates the dynamics of thermally activated excitations
of equilibrium systems. We use the time records generated
by the Metropolis Markov chains as a proxy of the time
evolution of these excitations. This is justified if the model
dynamics belongs to Hohenberg and Halperin’s Model A
classification [64,65]. Considering that the stripe-magnetic
phase has a nonconserved order parameter, and that neither
the magnetic nor the nematic order parameters are coupled
to conserved quantities, the domain dynamics of the model is
indeed expected to be relaxational and fall within the Model
A classification.

The Monte Carlo timescale was set by a single sweep, de-
fined by 2L2 single-spin Metropolis updates. A single Monte
Carlo sweep then maps onto the shortest physical real-time
scale of the problem. This is associated with the expected time
it takes for a single Ising spin to flip from one projection to the
other. We note that, in iron pnictides, the typical relaxational
timescales observed in the nematic-magnetic phase are of the
order of tens of picoseconds [66].

The clean system was simulated at the clean 2D Ising tran-
sition temperature T = 2.269 J while the disordered system’s
temperature was set to Tχ = 2.129 J (see Figs. 12 and 14).
These values were chosen to compare critical magnetic fluc-
tuations in the clean system with the disorder-enhanced
fluctuations of the RBFM.

The time records of σ , τ , στ , and ζ were taken for clean
(ε = 0) and disordered systems (ε = 0.5 J ) with L = 80 and
K = 0. The disordered systems each had different quenched
disorder configurations. Each Markov chain was thermalized
for 218 ≈ 2.6 × 105 sweeps and then the time records were
measured for Lt = 222 ≈ 4.2 × 106 sweeps. The power spec-
tral density (PSD) was averaged 100 times for the clean case
and over 200 disorder configurations for the disordered one.
For a given time record x = x(t ) with time average x, the PSD
is defined by

P[x(t ); f ] ≡ 1

Lt
x̃∗( f )x̃( f ) − x2Ltδ f ,0, (20)

where f has units of frequency and x̃( f ) is the discrete Fourier
transform of x(t ). The PSD above is the cosine transform of
the autocorrelation function of x(t ) given by

A[x(t ); t] = 1

Lt

∫
dt ′ [x(t + t ′)x(t ′)] − x2. (21)

The PSD is therefore the spectrum of the fluctuations
contained in the time record. For fast timescales (large
frequencies), the PSDs typically have power-law behavior.
Meanwhile, for timescales longer than the longest switching
time in the time record (small frequencies), the PSDs typically
saturate [67–69].

B. Dynamics at zero Baxter coupling

The time records for the magnetic, Baxter, and quadrature
variables are shown in Figs. 17 and 18 for a clean and a
disordered system, respectively. These time records are typi-
cal among different disorder configurations. Additionally, the
averaged PSDs for each observable are shown in the same
figures. The time records are only shown over about 250 000
Monte Carlo sweeps to make the switching events clearer.

The clean-case time records in Fig. 17 show multiple-
state switching events with the longest timescale being about
100 000 Monte Carlo sweeps. This is reflected in the aver-
aged PSDs in the same figure, which exhibit a plateau at a
frequency scale of 10−5 sweeps−1. Additionally, the switch-
ing of the two magnetic variables appears independent,
and their averaged magnetic PSDs appear identical. This is
consistent with the fact that the clean system with K = 0 cor-
responds to two independent Ising models. Since the Baxter
variable στ and the quadrature variable fluctuate whenever
either σ or τ fluctuate, the typical timescales associated with
these variables are smaller, with the longest one being about
50 000 for the Baxter variable. This smaller timescale is seen
in the Baxter PSD as well, as the plateau is shifted by about a
factor of 2 along the frequency axis. The quadrature variable
fluctuates the fastest when σ and τ are simultaneously near
zero.

The corresponding time records and PSDs for the disor-
dered system in Fig. 18 show that the Monte Carlo dynamics
of the fluctuations are qualitatively different than they are
for the clean case. The most obvious difference is that the
amplitude of the Baxter fluctuations is reduced. Similarly, the
relative change in the quadrature variable is typically smaller
than that in the clean system (with the exception of an event
occurring near 100 000 Monte Carlo sweeps). The reduction
of the Baxter noise can be attributed to domain breakup within
the system, whereas that for the quadrature fluctuations is due
to how infrequently both magnetic variables vanish simulta-
neously.

The main difference between the clean and disordered
cases is that magnetic fluctuations are correlated in the latter
due to the random Baxter field. Consider, for example, the
time records between about 25 000 and 170 000 Monte Carlo
sweeps, as highlighted in the purple region in Fig. 18. During
this time period, the σ -magnetic variable is mostly fluctuat-
ing around σ = 0 and the τ -magnetic variable is fluctuating
around τ ≈ 0.75. But, for times preceding this interval, or
those immediately following it, the magnetic variables change
roles with σ fluctuating around a finite value and τ fluctuating
around zero. These relatively long time periods in which one
magnetic variable has a finite expectation value while the
other is fluctuating around zero correspond precisely to the
hollow-square distribution of (σ, τ ) states shown in Fig. 14 at
temperatures T < 1.095 Tχ . The event around 100 000 Monte
Carlo sweeps, which substantially changes the quadrature
variable, seems to correspond to a failed, simultaneous switch-
ing of σ and τ .

The differences in the time records of the clean and dis-
ordered cases are also manifested in the PSDs. In both cases,
the Baxter and quadrature variables show a plateau within the
accessible frequency range, indicative of the longest timescale
associated with these fluctuations [67]. However, plateaus for
the σ and τ magnetic are absent in the disordered case, in
contrast with the clean system. Indeed, the magnetic PSDs
display power-law behavior down to the smallest frequencies
accessible in the disordered system. This behavior indicates
that the longest timescale associated with the magnetic vari-
ables is too long and inaccessible during these simulations,
and at least two orders of magnitude longer than the Baxter
timescale.
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FIG. 17. Metropolis evolution of the RBFM for a system size
L = 80 and K = 0 for the clean case (ε = 0) at the transition temper-
ature T (0)

c ≈ 2.269 J . We show a typical time record as a function of
Monte Carlo sweeps t and the average power spectral density (PSD)
as a function of frequency f for the (a), (b) σ , (c), (d) τ , (e), (f) Baxter
στ , and (g), (h) quadrature ζ variables. The vertical lines correspond
approximately to the frequencies at which the PSDs cross over from
a plateau to a power-law behavior.

At first, one might have expected the Baxter and magnetic
timescales to be comparable since the Baxter domains fluctu-
ate only because the magnetic degrees of freedom fluctuate.
Indeed, referring to the purple region in the time records of
Fig. 18, the σ variable is fluctuating around zero, τ remains
relatively constant, and the Baxter variable also fluctuates
around zero. This shows that, overall, the σ variable is broken
apart to satisfy the random strain constraint, allowing τ to
take on a finite value. This would seemingly imply that the
σ timescale should be comparable to the Baxter one, while
the timescale for τ should be longer than both.

FIG. 18. Metropolis evolution of the RBFM for a system size
L = 80, K = 0, and ε = 0.5 J at the peak temperature from Fig. 12
(Tχ = 2.129 J ). We show a typical time record as a function of Monte
Carlo sweeps t and the disorder-averaged power spectral density
(PSD) as a function of frequency f for the (a), (b) σ , (c), (d) τ , (e),
(f) Baxter στ , and (g), (h) quadrature ζ variables. The vertical lines
correspond approximately to the frequencies at which the PSDs cross
over from a plateau to a power-law behavior, if plateaus are present.
The highlighted region of the time records is discussed in the main
text.

However, the event around 100 000 sweeps, in which there
is a failure for σ and τ to switch roles, provides the explana-
tion of why the magnetic timescales can be so much longer
than the Baxter ones. While the Baxter variable fluctuates,
the magnetic variables need to simultaneously break apart and
reverse roles for a timescale to appear in the PSDs. But, such
events are rare since the constraints imposed by the random
Baxter field are satisfied by only a single magnetic variable.
The scarcity of these events is what then leads to the long-time
magnetic scales and to the disappearance of the plateaus in the
magnetic PSDs.
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V. DISCUSSION

The RBFM proposed and studied here provides a simple
yet powerful framework to capture the impact of random
strain in nematic systems for which the nematic instability
is intertwined with a magnetic- (or charge-) stripe instabil-
ity. Because in this case the nematic is a composite order
parameter, random strain has a dual role as a random nematic
field and a random magnetic bond. The extensive Monte Carlo
simulations performed here reveal that, like in the RFIM,
which is suitable for systems for which nematicity is a primary
instability, the nematic ground state in the RBFM also breaks
up in domains due to the random strain. However, in the
RBFM, random strain also promotes correlations between the
magnetic variables that have no counterpart either in the RFIM
or in the clean Ashkin-Teller model. These correlations are ul-
timately a consequence of the fact that the constraints imposed
by the random strain can be satisfied locally by two types of
magnetic configurations, resulting in a residual degeneracy for
the system. This property, in turn, is a direct manifestation of
the composite character of the nematic order parameter.

We showed that these random strain promoted correlations
are manifested in several properties of the RBFM. They not
only promote the emergence of a second breakup length scale,
but also of a second much longer timescale associated with the
simultaneous switching of the two magnetic order parameters.
These correlations appear unambiguously in the magnetic
configurational space as a probability distribution of the {σ, τ }
states in the shape of a hollow square. Such a distribution
function is interpreted in terms of one magnetic Ising variable
fluctuating around zero to satisfy the random strain con-
straint, while the other one acquires a nonzero average value.
The main signature of the disorder-promoted correlations in
the thermodynamics is the unexpected enhancement of the
magnetic susceptibility for large enough disorder strength.
In contrast, nematic fluctuations are generally suppressed by
disorder, similarly to the RFIM.

The fact that multiple magnetic configurations can satisfy
a given random strain realization suggests that, in contrast to
the RFIM, the RBFM may have a macroscopic ground-state
degeneracy. While our attempts to probe this macroscopic
ground-state degeneracy via replica-exchange WL simula-
tions gave inconclusive results, if this turns out to be the case,
a spin-glass phase for the magnetic variables might emerge.
Indeed, for the K = 0 case, the Hamiltonian in Eq. (8) has the
form of two independent Ising models coupled by a random
bond. This bilayer system is similar to the Edwards-Anderson
(EA) model of spin glasses [70], although in this case, the
two Ising layers representing the two magnetic variables in
the RBFM would have clean Ising ferromagnetic exchanges
within each layer, but the layers would be randomly coupled
to each other locally due to random strain. It would be in-
teresting to see if this EA implementation would also realize
a low-temperature spin-glass phase characterized by replica-
symmetry breaking [71].

The main material candidates to observe these effects are
the iron pnictides of the 122 (e.g., BaFe2As2), 1111 (e.g.,
LaFeAsO), and 111 (e.g., NaFeAs) families. In all these cases,
nematic order is intertwined with an antiferromagnetic stripe
order, and there is strong evidence for the magnetic origin of

the nematic instability [10]. In the language of the RBFM,
onto which the Ising J1-J2 model can be mapped, the σ and
τ variables refer to the staggered magnetizations of the two
interpenetrating Néel sublattices that form the stripe state
whereas the Baxter variable refers to the composite nematic
order parameter (recall Fig. 1). In these and other materials,
random strain is promoted by both chemical substitution and
intrinsic lattice defects such as vacancies, interstitials, dis-
locations, and twin boundaries [72]. These intrinsic effects
can be partially remedied via annealing, which was shown
in CaFe2As2 to reduce the amount of random strain present
in the sample [73]. Interestingly, in BaFe2As2, annealing was
found to bring the magnetic and nematic transitions closer
together towards a simultaneous first-order transition [74]. A
similar reduction of the splitting between the two transitions
was seen in CeFeAsO single crystals when compared to poly-
crystalline samples, which presumably have larger intrinsic
random strain [75]. These observations, as well as the general
increase of the magnetic transition temperature in annealed
samples [73–75], are qualitatively consistent with the splitting
between the peak temperatures of the magnetic and Bax-
ter susceptibilities seen in our simulations (see Fig. 12). Of
course, while in our 2D RBFM model no long-range order
is allowed, the magnetic and nematic transitions are expected
to survive up to a finite disorder strength in a more realistic
model with coupled RBFM layers.

Evidence for inhomogeneous and glassylike fluctuations
was reported by nuclear magnetic resonance (NMR) measure-
ments in 1111 [76] and 122 compounds [77,78]. In the case
of LaFeAsO, nuclear quadrupole resonance (NQR) measure-
ments further reported the existence of different local charge
environments [79]. While it is tempting to associate these
behaviors with nematic and magnetic domain breakup, and
to speculate that the two charge environments could corre-
spond to the two types of domain breakup, further analysis
is needed to disentangle this from other possible effects. In-
deed, because the spin 3

2 of the 75As nucleus experiences
both dipolar and quadrupolar interactions [78], it would be
valuable to quantitatively separate the nematic and magnetic
fluctuation contributions to the spin-lattice relaxation rate.
Moreover, a systematic analysis of the impact of annealing
on the glassylike NMR response would be desirable. It is
also interesting to note that ultrafast optical measurements
in the magnetically ordered state of BaFe2As2 revealed the
existence of two different relaxation time scales, a “slow” one
(of the order of tens of picoseconds) and a “fast” one (of the
order of picoseconds) [66]. While a different interpretation
was proposed in that paper, additional experiments in samples
subjected to different annealing regimens could help elucidate
whether these two timescales are those that characterize the
magnetic and nematic degrees of freedom in the RBFM.

We conclude by emphasizing that the RBFM should
also describe realistic nematic phenomena in other quasi-
2D quantum materials for which nematicity is a partially
melted density-wave stripe state. Beyond the iron pnictides,
nematicity in the cuprates has been proposed to arise from
the partial melting of charge-stripe order [35]. In contrast to
magnetic domains, but like nematic domains, charge-order
domains can in principle also be probed via scanning tunnel-
ing microscopy (STM) [38,80]. This opens up the interesting
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prospect of a quantitative analysis to search for signatures of
RBFM behavior in the STM data, similarly to what has been
previously done using the RFIM [25].
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APPENDIX A: GINZBURG-LANDAU EXPANSION
OF THE RBFM

We first derive the coarse-grained effective field theory for
the Ashkin-Teller model in the absence of any external strain.
We then compare it to the known Ginzburg-Landau theory for
the Ising J1-J2 model and discuss the mapping between the
two models in the presence of an external strain.

For convenience, we write again the Ashkin-Teller Hamil-
tonian:

H = −
∑
〈i j〉

[J (σiσ j + τiτ j ) + Kσiτiσ jτ j]. (A1)

Let J̃i j and K̃i j denote sparse N × N matrices whose nonzero
elements J and K , respectively, connect nearest-neighbor
sites. Then, the canonical partition function is given by

Z = Tr{σ,τ } exp

{
β

2

∑
i j

[J̃i j (σiσ j + τiτ j ) + K̃i jσiτiσ jτ j]

}
,

(A2)

where β is the inverse temperature. From this expression, we
identify three Hubbard-Stratonovich fields for the σ , τ , and
στ degrees of freedom, which we denote as M1, M2, and
ϕ. Making use of the corresponding Hubbard-Stratonovich
transformations, the partition function becomes

Z ∝
∫

DM1DM2Dϕ

× exp

{
− 1

2β

∑
i j

( ∑
α=1,2

J̃−1
i j Mα,iMα, j + K̃−1

i j ϕiϕ j

)

+
∑

i

V (M1,i, M2,i, ϕi )

}
, (A3)

where the onsite potential function V = V (x, y, z) is given by

V (x, y, z) ≡ log {Trσ,τ exp (xσ + yτ + zστ )}
= log 4 + log [Pc(x, y, z) + Ps(x, y, z)], (A4)

with the functions Pc,s being given by

Pc(x, y, z) = cosh(x) cosh(y) cosh(z), (A5)

Ps(x, y, z) = sinh(x) sinh(y) sinh(z). (A6)

The terms with coefficients J̃−1
i j and K̃−1

i j contribute to the
“mass” for each field and also generate gradient terms allowed
by symmetry. Neglecting these gradients for now, we write the
partition function per site as

Zi ∝
∫

dM1,idM2,idϕi exp

{
− 1

2βJz

(
M2

1,i + M2
2,i + 1

g
ϕ2

i

)

+ V (M1,i, M2,i, ϕi )

}
, (A7)

where z is the number of nearest neighbors each site has and
the dimensionless parameter g ≡ K/J . Hereafter, we omit the
site index for simplicity.

For small fields and dropping the constant log 4, the poten-
tial is expanded as

V (M1, M2, ϕ) ≈ 1

2

(
M2

1 + M2
2 + ϕ2

) + M1M2ϕ

− 1

12

(
M4

1 + M4
2 + ϕ4

)
. (A8)

Denoting the effective action with the expanded poten-
tial as Seff , we can evaluate the ϕ integration in Z ∝∫

dM1dM2dϕ e−Seff upon noting that there is no ϕ-driven
instability in the regime where the Ising J1-J2 model and
the Ashkin-Teller model map onto one another, which cor-
responds to g ∈ (0, 1). In this case, we can neglect the ϕ4

term, allowing us to integrate out the nematic field. We then
obtain the effective magnetic free-energy density, defined by
Z ∝ ∫

dM1dM2 e−β feff , as

β feff = 1

2

(
1

βJz
− 1

)(
M2

1 + M2
2

) + 1

12

(
M4

1 + M4
2

)
− βJgz

2(1 − βJgz)
(M1M2)2. (A9)

We can now add back the lowest-order gradient terms allowed
by symmetry. Then, after defining r ≡ 1/βJz − 1, we obtain
the Ginzburg-Landau free-energy density of the Ashkin-Teller
model as

β feff = 1

2

2∑
α=1

[
rM2

α + 1

6
M4

α + c2(∇Mα )2

]

− βJgz

2(1 − βJgz)
(M1M2)2, (A10)

where c, called the stiffness coefficient, is a function of the
microscopic Ising exchange J . We note that the free energy
above retains a fourfold symmetry due to the symmetry be-
tween the σ and τ Ising degrees of freedom.

This free-energy expansion can be compared to that of the
Ising J1-J2 model. Using the results from Refs. [36,37], the
Ginzburg-Landau expansion for the free energy of the J1-J2
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model is given by

β feff = 1

2

2∑
α=1

[
r̃φ2

α + uφ4
α + c̃2(∇φα )2

] − α(φ1φ2)2. (A11)

Here, φ1,2 are the two scalar staggered sublattice magnetiza-
tions, and the nematic variable is given by their product φ1φ2.
Moreover, r̃ is the distance from the critical point, u > 0, and c̃
is the stiffness coefficient. The coefficient of the last term, α >

0, is generated from either quantum or thermal fluctuations,
and stabilizes the nematic phase through the order-by-disorder
mechanism [36,37,81].

Comparing the two low-energy effective theories in
Eqs. (A10) and (A11), we conclude that they indeed share the
same low-energy behavior.

Consider now the presence of external strain ε, which
favors a nematic order parameter ϕ ∼ M1M2 with same sign
as that of ε. To leading order, it introduces a new quadratic
term in the free-energy expansion of the Ashkin-Teller model
in Eq. (A10):

δ(β feff ) = −βεM1M2. (A12)

Analogously, the same quadratic coupling, but for the nematic
order parameter φ1φ2, emerges in the free-energy expansion
of the Ising J1-J2 model. As a result, the mapping between the
two models should hold also in the presence of random strain.

APPENDIX B: NUMERICAL METHODS

1. Adaptive simulated annealing

We used simulated annealing to get a qualitative picture
of the emergence of two length scales in the RBFM induced
by the random Baxter field. To do so, we had to simulate
the system at low temperatures to disentangle the disorder
effects from thermal fluctuation effects. At low temperatures,
the effects of disorder are more pronounced, but this leads to
the possibility of a simulation getting stuck in a metastable
state if one were to simply set the temperature to be low.
Simulated annealing provides a physically motivated way
to move a simulation into lower-energy states by thermally
activated tunneling through energy barriers separating local
energy minima [82]. It does so by first raising the temperature
of the simulation above all energy barriers, and then slowly
lowering the temperature of the system, or “annealing” it, until
the lowest temperature is reached. Our algorithm is “adaptive”
in the sense that it continues simulating at a single temperature
if it notices the system is not yet equilibrated.

A conventional simulated annealing regimen is performed
according to the following steps. First, one initializes the
system in some state. Then, an initial temperature is chosen
and the system is equilibrated using some updating scheme
satisfying detailed balance. From there, the system is annealed
by lowering the temperature slowly enough such that it equi-
librates at each new temperature until it reaches some defined
lowest temperature [82].

Our adaptive approach works by defining equilibrium
based on time records of the energy that are Lt sweeps long.
The time records are split into two blocks and the system is
said to be equilibrated if one of the following two conditions
are met:

(1) The energy does not vary in both blocks of Monte
Carlo time,

(2) The average energy of the second block is within one
standard deviation of the first and the variance of the energy
in the second block is within a specified tolerance η of that in
the first block.

The first condition is that the system is frozen in a partic-
ular energy state: this may only occur at low temperatures.
Condition 2 is that measurements of the energy and specific
heat [through Eq. (12)] are statistically time independent. If
neither of these two conditions are met, then the system con-
tinues its Markov chain at the same temperature and computes
another time record of the energy.

The numerical parameters used in our simulated annealing
run are as follows. We initialized the magnetic degrees of free-
dom in the RBFM with equal probability of being ±1 at each
site, which corresponds to a microstate with maximal entropy.
We used the initial temperature of Ti ≡ 2.269 J corresponding
to the 2D Ising critical temperature. We equilibrated the sys-
tem using a single-site Metropolis updating scheme over two
time record blocks, each of size 210 = 1024 sweeps, making
Lt = 2048 sweeps long. The specific-heat tolerance was set to
η = 0.05. We chose a cooling regimen corresponding to

Tj = Ti

(Tf

Ti

) j/Nsteps

, (B1)

where Tj is the temperature of the jth simulated annealing
step, with j ∈ {1, 2, . . . , Nsteps}, and Tf is the final temper-
ature. The data shown in Figs. 4 and 5 from simulated
annealing had a minimum temperature of Tf = 0.269 J and
ran over Nsteps = 150 steps. Thus, the temperature of the sim-
ulation decreased by about 1.4% between steps. At this small
percentage, we noticed that each step would typically require
less than five adaptive iterations to equilibrate.

2. Wang-Landau sampling

We employ the replica-exchange Wang-Landau (WL)
Monte Carlo technique recently developed for complex en-
ergy landscapes [60–62] to simulate Eq. (8). This technique
expands on the WL sampling algorithm known for its ability
to quickly calculate thermodynamic properties at arbitrary
temperatures after obtaining a system’s microcanonical den-
sity of states [58,59].

In the WL algorithm, the density of states g at a given
energy E is obtained iteratively by performing a random walk
through energy space. It is calculated by keeping track of two
histograms during a random walk through the system’s phase
space. The first is the approximation of g(E ) and the other one
is typically called the “energy histogram,” denoted by H(E ).
The energy histogram is used to ensure the sampling of the
phase space is uniform throughout the simulation.

The density of states is initially approximated as a constant
of value one whereas the energy histogram is set to be a con-
stant zero. During the random walk, transitions from energy
E to E ′ are accepted with probability

W (E → E ′) = min

{
1,

g(E )

g(E ′)

}
. (B2)
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In our simulations, new energy states are generated as single-
spin updates of one Ising spin color for a single lattice sweep
while the other one is quenched. Regardless of whether the
transition is accepted, one updates both g and H at the result-
ing energy. The increment for the energy histogram always
comes from the addition of 1 in the resulting energy bin. The
density of states in that energy bin, meanwhile, is scaled by a
factor fi in the ith iteration, where fi is given by

fi = f
1

2i−1

1 . (B3)

A typical value for the initial increment is f1 = e. Each
iteration ends once the energy histogram is “flat.” In our
simulations, “flatness” was measured according to a tolerance
ε � 0.3 such that

max {H(E )} − min {H(E )}
min {H(E )} < ε. (B4)

After an iteration, the energy histogram is reset to zero and,
conventionally, the density of states is left untouched. How-
ever, since g(E ) updated in the WL scheme is only the relative
density of states, after each iteration we scale the density of
states by its minimum value to maintain numerical sensitivity
to the decreasing fi.

The microcanonical density of states is considered “con-
verged” when its increment is smaller than a predefined value.
In our case, this value was fi � 1 + 5 × 10−7 in the most
demanding cases (K = 0 simulations), although we typically
used a more stringent condition of fi � 1 + 1 × 10−7 when
possible (K > 0 simulations). Upon convergence, the thermo-
dynamic observables obtained by energetic moments can be
computed from the density of states at any temperature T
since the partition function is given by

Z =
∑

E

g(E ) e−E/T . (B5)

For example, 〈En〉 for some power n is obtained by

〈En〉 = 1

Z
∑

E

g(E ) e−E/T En, (B6)

from which the specific heat, measured as the heat capacity
per lattice site, is calculated from Eq. (12).

One can extend the WL algorithm to a joint density
of states if nonenergy moments of the Boltzmann distribu-
tion are required [58,59]. This would require a joint energy
histogram whose flatness would then be measured in the
higher-dimensional space. However, to speed our simulations,
we instead kept track of another histogram for each nonenergy
observable of interest; |σ | and |τ | are a couple, for example.
These observable histograms do not influence the convergence
rate of the simulation as they do not appear in our flatness
metric. Instead, they capture the mean value of nonenergy ob-
servables within each energy bin. These means were updated
as a cumulative moving average per energy bin for each WL
update. Denoting such an observable as A, and its histogram
of mean values in energy space as A(E ), then its expectation
value at any temperature is

〈A〉 = 1

Z
∑

E

g(E ) e−E/T A(E ). (B7)

In our typical simulation, there are more than 107 individual
measurements taken for each observable in each energy bin.
These measurements per bin likely suffer from autocorrela-
tions, but we obtain error bars on thermodynamic observables
by running simulations in parallel with different seeds for the
random number generators and then averaging the results.

3. Replica-exchange Wang-Landau sampling

WL sampling is a fast Monte Carlo method for studying
small and simple systems. When applied to larger systems, or
systems with complex energy landscapes, the time to solution
increases rapidly. Thus, to study the effect of the random
strain disorder in Eq. (8), we employ a replica-exchange WL
sampling algorithm which is a massively parallel extension of
the WL procedure above [60–62].

Its ability to speed up WL sampling comes in three parts.
First, it divides the phase-space volume into a set of Nw

equally sized, overlapping energy windows within which g(E )
is approximated using the WL scheme. Second, the energy
windows in the overlapping regions are occasionally allowed
to exchange states with a probability:

W ({E1, E2} → {E2, E1}) = min

{
1,

g1(E1)

g1(E2)
· g2(E2)

g2(E1)

}
,

(B8)
where E1 and E2 are the energies of the two windows under-
going exchange and g1 and g2 are their density of states. From
Eq. (B2), one sees that when the exchange is not guaranteed,
Eq. (B8) is simply the product of the WL transition probabili-
ties for the first energy window to move from E1 to E2 and for
the second one to move from E2 to E1.

When an exchange update is accepted, then the two en-
ergy windows involved swap their spin configurations. The
density of states and energy histogram in each window are
always incremented after an exchange attempt, regardless of
whether the exchange actually occurred. In our simulations,
an exchange attempt was made between two adjacent energy
windows after each sweep of the lattice to increase the number
of exchanges. This facilitates information dispersal through
the divided phase space.

The third part of replica-exchange WL sampling comes
by adding n-independent WL random walkers, or replicas, to
each of the Nw energy windows. By increasing n, the number
of exchanges increases. The optimal speedup of replica-
exchange WL over standard WL comes from a combination
of the size of the overlap, the number of energy windows, the
number of replicas per window, and how often the exchange
updates are attempted. The optimizing combination of these
parameters is model dependent, but we found success when
allowing a 75%–80% overlap between energy windows with
only 2 (K > 0) or 1 (K = 0) replicas per window. When K >

0, the number of windows was set to be Nw = 2L. However,
when K = 0 with a nonzero disorder strength, we found that
a smaller number of windows allowed for the fastest conver-
gence with Nw = 24.

In the replica-exchange WL scheme, the simulation is fin-
ished when each density of states in each energy window
is converged. If some windows converge before others, then
they continue to perform replica-exchange WL updates until
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TABLE I. Number of replica-exchange WL simulation disorder
configurations for each set of model parameters for a system size L =
40. The columns with K defined correspond to the RBFM while the
RFIM column is for the random-field Ising model. These parameters
were used in all figures other than Fig. 7.

Disorder strength K = 0.5 J K = 0 RFIM

ε = 0.0 J 64 64 128
ε = 0.2 J 96 96 128
ε = 0.5 J 94 120 126
ε = 0.8 J 246 147 148

the rest of the windows converge as well. This allows infor-
mation from the faster-converging regions of phase space to
still diffuse to the slower regions. When there are multiple
replicas in a single energy window, the window itself moves
from one iteration to the next only when every replica’s energy
histogram is flat. When this happens, the density of states from
each replica is scaled as for normal WL sampling, and then
the densities of states from all the replicas are averaged and
redistributed before the next iteration is performed. The ob-
servables from all the walkers within a single energy window,
however, are only averaged after the simulation is complete.

Once complete, the density of states over the full phase
space is assembled by stitching together the individual den-
sity of states from each energy window. This procedure is
carried out within the overlapping regions by finding the
energy bin where the microcanonical temperatures T −1 =
d log g(E )/dE are the closest between a lower-energy win-
dow and a higher-energy window. The differentiation is
performed with a finite-difference formula accurate up to
fourth order in the bin size. The observables are averaged
within the overlapping regions. Since multiple windows may
be overlapping in the same region, this may lead to an over-
writing of the final density of states. We do not stop this from
happening; however, the observables are still averaged across
all overlapping windows such that statistics from any energy
window with an overwritten density of states is not lost.

4. Disorder averaging

The Hamiltonian in Eq. (8) was simulated for a single-field
configuration, or single quenched set of random Baxter-field
variables {εi}, using the replica-exchange WL procedure.
Then, the thermodynamics from many field configurations
were averaged to obtain our final results.

TABLE II. Number of replica-exchange WL simulation disorder
configurations for each model parameter for the systems in Fig. 7.

System size ε = 0.0 J ε = 0.5 J

L = 24 64 128
L = 32 64 124
L = 40 64 114
L = 48 64 173
L = 56 64 78

Denoting the thermodynamic average of an observable A
in disorder configuration j by 〈A〉 j , the disorder-averaged
expectation value over M-field configurations was calculated
as

[[〈A〉]] = 1

M

M∑
j=1

〈A〉 j, (B9)

where the double brackets [[·]] represent the disorder average.
Its standard error of the mean was computed as

δAd.a. =
[

1

M(M − 1)

M∑
j=1

(〈A〉 j − [[〈A〉]])2

]1/2

. (B10)

Tables I and II show the number of distinct disorder
configuration averaged over for the replica-exchange WL
simulations. The differences in the numbers of disorder con-
figurations are due to the increasing difficulty to converge the
simulations for large disorder strengths.

5. Replica-exchange Wang-Landau simulation code details

The replica-exchange WL parallelization was performed
processorwise on supercomputing nodes at the Minnesota Su-
percomputing Institute. The replica-exchange WL code was
benchmarked against the 2D clean Ising model and 2D clean
ATM, as well as a 2D RFIM, all on a periodic square lattice.
The only difference in the code between these test models and
our ATM is the Hamiltonian selected at compile time. Any
numerical analysis performed after the simulations were com-
plete, such as disorder averaging, plotting, etc., was scripted
using Python 3 making use of the SCIPY libraries. The source
code and job scripts can be found at Ref. [83].
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