13 research outputs found

    Opioid-induced proliferation of vascular endothelial cells

    Get PDF
    Angiogenesis is an important issue in cancer research and opioids are often used to treat pain in cancer patients. Therefore it is important to know if the use of opioids is associated with an aberrant stimulation of tumor growth triggered by the stimulation of angiogenesis in cancer patients. Some studies in the literature have suggested the presence of the μ3 opioid receptor, known as the receptor for many opioids, on endothelial cells, which are key players in the process of angiogenesis. In this study we used endothelial cells known to express the μ3 opioid receptor (MOR3), to evaluate the effects of morphine on angiogenesis. We first investigated the effect of morphine on the proliferation of endothelial cells. We showed that morphine is able to stimulate vascular endothelial cell proliferation in vitro. This effect of morphine is mediated by the mitogen-activated protein kinase (MAPK) pathway as pre-treatment with PD98059 inhibited this excessive proliferation. Because previous studies indicated nitric oxide (NO) as a downstream messenger we investigated the role of NO in the aberrant proliferation of endothelial cells. Our data could not confirm these findings using intracellular NO measurements and quantitative fluorescence microscopy. The potential use and pitfalls of opioids in cancer patients is discussed in light of these negative findings

    Alpha2-Adrenoceptor Agonists and Stress-Induced Analgesia in Rats: Influence of Stressors and Methods of Analysis

    No full text
    The present experiments were de signed to investigate the role of housing and handling conditions during testing, as well as data analysis, on the outcome of antinociceptive testing of alpha(2)-adrenoceptor agonists, fentanyl, and a high dose of chlordiazepoxide in the tail withdrawal reaction test (TWR test) in rats. Dose-response curve data were obtained with fentanyl, clonidine, xylazine, dexmedetomidine, and 40.00 mg/kg chlordiazepoxide and were compared under normal TWR test conditions and during immobilization or immobilization with continuous painful stimulation. Data were analyzed in terms of ah-or-none criteria as well as percentage maximum possible effect (%MPE) analysis over the total measurement period or at any specific time point during testing. The results indicate that stress, induced by immobilization and immobilization with long-term-applied paw pressure, unmasked possible antinociceptive properties of the various alpha(2)-adrenoceptor agonists and potentiated the effects of fentanyl. Stress also unmasked the positive effects of benzodiazepines. The manner of data analysis was shown to significantly affect the outcome measured in stress and nonstress conditions. The MPE analysis, particularly at one time point, appeared much more sensitive than the ah-or-none criteria. The data indicate that the housing and handling conditions of animals during testing, together with data analysis, may affect the outcome of different classes of compounds in the TWR test, and this knowledge may help control for false positive results. (C) 1997 Elsevier Science Inc

    Peripheral Administration of Tumor Necrosis Factor-Alpha Induces Neuroinflammation and Sickness but Not Depressive-Like Behavior in Mice

    Get PDF
    Clinical observations indicate that activation of the TNF-α system may contribute to the development of inflammation-associated depression. Here, we tested the hypothesis that systemic upregulation of TNF-α induces neuroinflammation and behavioral changes relevant to depression. We report that a single intraperitoneal injection of TNF-α in mice increased serum and brain levels of the proinflammatory mediators TNF-α, IL-6, and MCP-1, in a dose- and time-dependent manner, but not IL-1β. Protein levels of the anti-inflammatory cytokine IL-10 increased in serum but not in the brain. The transient release of immune molecules was followed by glial cell activation as indicated by increased astrocyte activation in bioluminescent Gfap-luc mice and elevated immunoreactivity against the microglial marker Iba1 in the dentate gyrus of TNF-α-challenged mice. Additionally, TNF-α-injected mice were evaluated in a panel of behavioral tests commonly used to study sickness and depressive-like behavior in rodents. Our behavioral data imply that systemic administration of TNF-α induces a strong sickness response characterized by reduced locomotor activity, decreased fluid intake, and body weight loss. Depressive-like behavior could not be separated from sickness at any of the time points studied. Together, these results demonstrate that peripheral TNF-α affects the central nervous system at a neuroimmune and behavioral level
    corecore