9 research outputs found

    SLOW AND STEADY WINS THE ORGANIC RACE

    Get PDF
    Organic production is carried out under an extensive regulatory setup because organic products are sold as value-added products with certified organic labelling in developed countries. Production is strictly monitored at every step in production chain. Organic production apart from being eco-friendly offers higher net returns per unit area compared to conventional agriculture. Organic production uses traditional tillage systems, crop rotations, crop residues, animal manures, legumes, green manures, off-farm organic wastes, mineral bearing rocks, and biological pest and weed control to maintain soil productivity. Thus, an organic farm should be a self contained system of production with minimal dependence on external inputs. Those farms having dairy as one of the active components will have to convert to organic livestock management so that manures supplied are as per requirements for organic production. The dairy products can also be certified organic to fetch higher prices. Organic farming is a highly labour intensive enterprise. Some of the major organic accreditation agencies are IFOAM (International Federation of Organic Agriculture Movements), FiBL, Demeter and many more. APEDA has also developed national standards for organic production. Indian farmers face many challenges in adoption of certified organic production. Some of the important organic production requirements as per national standards for organic production have been developed by APEDA.Genetically engineered cultivars or plant materials are not permitted in organic production. Some of the important organic production requirements as per national standards for organic production have been developed by APEDA. Some of the important organic production requirements as per national standards for organic production have been developed by APEDA.Before products from a farm/project can be certified as organic, inspection shall be carried out during the conversion period. To ensure a clear separation between organic and conventional production, the certification programme (agency) shall inspect, where appropriate, the whole production system. Organic production is one area of agriculture which can convert India’s ‘Green Revolution’ into ‘Evergreen Revolution’

    Performance of Chilli (Capsicum annuum L.) hybrids for yield and quality traits

    Get PDF
    Twenty-eight F1 combinations of chilli (Capsicum annuum L.) obtained from half-diallel cross along with eight diverse parents were evaluated in a field study to elucidate the information on the extent of mean performance of various horticultural traits. The analysis revealed that all the genotypes possessed wide spectrum of variability and showed significant differences for parents and hybrids for the traits studied. For parents UHF CHI 13 (216.20), UHF CHI 15 (193.80), UHF CHI 5 (139.00) and for hybrids H1 (182.60), H9 (181.40) and H7 (172.80) hold highest fruit count per plant. The parents UHF CHI 5 (1047.13 g), UHF CHI 15 (949.62 g) and UHF CHI 7 (912.61 g) and cross combinations H17 (1535.10 g), H8 (1320.00), H6 (1229.76) and H18 (967.60) recorded the high ripe fruit yield per plant. As for earliness, parents UHF CHI 5 (43.33), UHF CHI 11 (45.00), UHF CHI 7 (45.33) and hybrids H27 (42.67), H26 (43.00) and UH28 (43.00) took minimum days for flowering. For pungency UHF CHI 12 (0.28 %), UHF CHI 13 (0.26 %), DKC-8 (0.24 %) and H23 (0.33 %), H5 (0.31 %), H26 (0.26 %) recorded high capsaicin content

    Evolution of the Bovine TLR Gene Family and Member Associations with Mycobacterium avium Subspecies paratuberculosis Infection

    Get PDF
    Members of the Toll-like receptor (TLR) gene family occupy key roles in the mammalian innate immune system by functioning as sentries for the detection of invading pathogens, thereafter provoking host innate immune responses. We utilized a custom next-generation sequencing approach and allele-specific genotyping assays to detect and validate 280 biallelic variants across all 10 bovine TLR genes, including 71 nonsynonymous single nucleotide polymorphisms (SNPs) and one putative nonsense SNP. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and specialized beef and dairy breeds could not be differentiated despite an average polymorphism density of 1 marker/158 bp. Collectively, 160 tagSNPs and two tag insertion-deletion mutations (indels) were sufficient to predict 100% of the variation at 280 variable sites for both Bos subspecies and their hybrids, whereas 118 tagSNPs and 1 tagIndel predictively captured 100% of the variation at 235 variable sites for B. t. taurus. Polyphen and SIFT analyses of amino acid (AA) replacements encoded by bovine TLR SNPs indicated that up to 32% of the AA substitutions were expected to impact protein function. Classical and newly developed tests of diversity provide strong support for balancing selection operating on TLR3 and TLR8, and purifying selection acting on TLR10. An investigation of the persistence and continuity of linkage disequilibrium (r2≥0.50) between adjacent variable sites also supported the presence of selection acting on TLR3 and TLR8. A case-control study employing validated variants from bovine TLR genes recognizing bacterial ligands revealed six SNPs potentially eliciting small effects on susceptibility to Mycobacterium avium spp paratuberculosis infection in dairy cattle. The results of this study will broadly impact domestic cattle research by providing the necessary foundation to explore several avenues of bovine translational genomics, and the potential for marker-assisted vaccination

    A Three-Component Gene Expression System and Its Application for Inducible Flavonoid Overproduction in Transgenic Arabidopsis thaliana

    Get PDF
    Inducible gene expression is a powerful tool to study and engineer genes whose overexpression could be detrimental for the host organisms. However, only limited systems have been adopted in plant biotechnology. We have developed an osmotically inducible system using three components of plant origin, RD29a (Responsive to Dehydration 29A) promoter, CBF3 (C-repeat Binding Factor 3) transcription factor and cpl1-2 (CTD phosphatase-like 1) mutation. The osmotic stress responsible RD29a promoter contains the CBF3 binding sites and thus RD29A-CBF3 feedforward cassette enhances induction of RD29a promoter under stress. The cpl1-2 mutation in a host repressor CPL1 promotes stress responsible RD29a promoter expression. The efficacy of this system was tested using PAP1 (Production of Anthocyanin Pigment 1) transgene, a model transcription factor that regulates the anthocyanin pathway in Arabidopsis. While transgenic plants with only one or two of three components did not reproducibly accumulate anthocyanin pigments above the control level, transgenic cpl1 plants containing homozygous RD29a-PAP1 and RD29a-CBF3 transgenes produced 30-fold higher level of total anthocyanins than control plants upon cold treatment. Growth retardation and phytochemical production of transgenic plants were minimum under normal conditions. The flavonoid profile in cold-induced transgenic plants was determined by LC/MS/MS, which resembled that of previously reported pap1-D plants but enriched for kaempferol derivatives. These results establish the functionality of the inducible three-component gene expression system in plant metabolic engineering. Furthermore, we show that PAP1 and environmental signals synergistically regulate the flavonoid pathway to produce a unique flavonoid blend that has not been produced by PAP1 overexpression or cold treatment alone

    Arabidopsis Carboxyl-Terminal Domain Phosphatase-Like Isoforms Share Common Catalytic and Interaction Domains But Have Distinct in Planta Functions

    No full text
    An Arabidopsis (Arabidopsis thaliana) multigene family (predicted to be more than 20 members) encodes plant C-terminal domain (CTD) phosphatases that dephosphorylate Ser residues in tandem heptad repeat sequences of the RNA polymerase II C terminus. CTD phosphatase-like (CPL) isoforms 1 and 3 are regulators of osmotic stress and abscisic acid (ABA) signaling. Evidence presented herein indicates that CPL3 and CPL4 are homologs of a prototype CTD phosphatase, FCP1 (TFIIF-interacting CTD-phosphatase). CPL3 and CPL4 contain catalytic FCP1 homology and breast cancer 1 C terminus (BRCT) domains. Recombinant CPL3 and CPL4 interact with AtRAP74, an Arabidopsis ortholog of a FCP1-interacting TFIIF subunit. A CPL3 or CPL4 C-terminal fragment that contains the BRCT domain mediates molecular interaction with AtRAP74. Consistent with their predicted roles in transcriptional regulation, green fluorescent protein fusion proteins of CPL3, CPL4, and RAP74 all localize to the nucleus. cpl3 mutations that eliminate the BRCT or FCP1 homology domain cause ABA hyperactivation of the stress-inducible RD29a promoter, whereas RNAi suppression of CPL4 results in dwarfism and reduced seedling growth. These results indicate CPL3 and CPL4 are a paralogous pair of general transcription regulators with similar biochemical properties, but are required for the distinct developmental and environmental responses. CPL4 is necessary for normal plant growth and thus most orthologous to fungal and metazoan FCP1, whereas CPL3 is an isoform that specifically facilitates ABA signaling

    Structure-activity relationships in copper complexes bio-inspired from nitrous oxide reductase

    Get PDF
    Etude de la relation structure-activité de complexes bio-inspirés de la réductase de l'oxyde nitreux N2O est un puissant gaz à effet de serre et est impliqué dans la destruction de la couche d'ozone, ce qui rend sa dégradation très intéressante. Il s'agit d'un intermédiaire du cycle catalytique de la nitrification bactérienne. En effet, en biologie une métalloenzyme est capable de réduire N2O à deux électrons en N2 et H2O. Le site actif de la réductase de l'oxyde nitreux, le centre CuZ, renferme l'unique association de quatre ions cuivre pontés par un ion sulfure. Afin d'obtenir des complexes capables d'activer N2O et d'approfondir la compréhension du mécanisme catalytique de l'enzyme nous avons élaboré des modèles inspirés du centre CuZ. Il s'agit de complexes dinucléaires de cuivres possédant le motif {Cu2(µ-S)} supposé indispensable à l'activation de N2O. Les complexes à valence mixtes décrits dans ces travaux ont été complétements caractérisés et leur activité vis-à-vis de la réduction de N2O a été évaluée. Ces complexes constituent le premier modèle de ce type capable de réduire N2O. Des études spectroscopiques, électrochimiques et théoriques nous ont également permises de proposer un mécanisme réactionnel, passant par la formation d'un adduit complexe-N2O. Nous avons également pu mettre en évidence le rôle crucial de la molécule d'eau, ligand exogène des complexes, dans ce mécanisme. En parallèle, la stabilité en solution de différentes liaisons disulfures présentes au sein de ligands tétranucléants, en présence de CuII, a été évaluée. La réactivité de la liaison disulfure est dépendante de la fixation des ions cuivre à proximité des atomes de soufres. Trois ligands possédants des substituants aminés différents ont été testés, chacun présentant une réactivité particulière. Nous avons montré pour l'un de ces ligands que l'oxydation de la liaison disulfure pouvait être réalisée en absence d'oxydant fort, l'eau jouant le rôle de nucléophile.Structure-activity relationships in copper complexes bio-inspired from nitrous oxide reductase N2O is a powerful greenhouse gas and is involved in the ozone layer destruction, which makes it degradation very interesting. N2O is an intermediate of the catalytic cycle of bacterial nitrification. Indeed, in biology a metalloenzyme can reduce N2O with two electrons to N2 and H2O. The active site of nitrous oxide reductase, the CuZ center, contains a unique combination of four copper ions bridged by a sulfide ion. In order to obtain complexes able to activate N2O and deepen the understanding of the catalytic mechanism of the enzyme we have developed models based on the CuZ center. Binuclear copper containing the {Cu2(μ-S)} pattern that is supposed essential to N2O activation have been synthetized. Mixed valent complexes described in this work were fully characterized and their activity toward N2O was evaluated. These complexes are the first model like this capable of N2O reduction. Spectroscopic, electrochemical and theoretical studies have also allowed us to propose a reaction mechanism, which passes through the formation of an adduct complex-N2O. We were also able to highlight the crucial role of the exogenous water molecule in this mechanism. In parallel, the solution stability of different disulfide bonds present in tetranucleating ligands in the presence of CuII was evaluated. The reactivity of the disulfide bond is dependent upon the binding of copper ions near sulfur atoms. Three ligands with different amino groups were tested, each having a specific reactivity. We have shown for one of them that the oxidation of the disulfide bond could be carried out in the absence of strong oxidizer, water acting as the nucleophi

    The t(8;14)(q24.1;q32) and its variant translocations: a study of 34 cases

    No full text
    Background: The t(8;14)(q24.1;q32) and its variants – the t(2;8)(p12;q24.1) and t(8;22)(q24.1;q11.2) are associated with B-cell neoplasia and result in MYC/immunoglobulin (IG) gene rearrangement. Patients and methods: We correlated the cytogenetic, molecular and clinico-pathological findings of patients with 8q24 translocations seen in the Department of Haematology, Christian Medical College, Vellore, from January 2003 to December 2015. Results: There were 34 patients with 8q24 translocations (31, ALL and three myeloma). The t(8;14) was seen in 25 patients, t(8;22) in seven and t(2;8) in two. The salient findings were as follows: 85% males; 79% adults, median age 37 years; L3 morphology in 61%; mature B immunophenotype in 77%; extra-medullary disease in 41%; additional abnormalities in 28 (85%), notably, structural abnormalities of chromosome 1q (41%) and 13q (9%) and monosomy 13 (15%); complex karyotypes in 68%. There were two double-hit lymphoma/leukemia, one with a t(14;18)(q32;q21) and the other with a t(3;14)(q27;q11.2), associated with nodal high grade B cell lymphoma and dermal leukemic infiltrates respectively. Only 13 samples were processed for DNA PCR and all these samples were positive for MYC-IgH (c-gamma type) rearrangement. Only in one patient, in addition to c-gamma, c-alpha rearrangement was also detected. Conclusion: The frequency (1.7%) and distribution of these translocations in our series and the association with 1q and 13q abnormalities is similar to the literature. Trisomies 7 and 12 were seen in less than 10% of our patients
    corecore