31 research outputs found
Open Source and the Age of Enforcement
The last five years have seen the first serious enforcement efforts by licensors of open source software, so we are truly at the dawning of the age of enforcement. But open source claims are not like other claims. Understanding the distinctions between open source software claims and other intellectual property claims is key to reacting to open source claims gracefully, effectively, and with a minimum of embarrassment and cost. This Article provides a survey of where we stand today and demonstrates how this area of law has developed. We will be soon nearing the point where catalogs of open source claims in articles like this one will no longer be sensible or useful, but for now, seeing where we have been neatly explains where we are
Environmental exposure to pyrethroids and sperm sex chromosome disomy: a cross-sectional study
Abstract
Background
The role of environmental pesticide exposures, such as pyrethroids, and their relationship to sperm abnormalities are not well understood. This study investigated whether environmental exposure to pyrethroids was associated with altered frequency of sperm sex chromosome disomy in adult men.
Methods
A sample of 75 subjects recruited through a Massachusetts infertility clinic provided urine and semen samples. Individual exposures were measured as urinary concentrations of three pyrethroid metabolites ((3-phenoxybenzoic acid (3PBA), cis- and trans- 3-(2,2-Dichlorovinyl)-1-methylcyclopropane-1,2-dicarboxylic acid (CDCCA and TDCCA)). Multiprobe fluorescence in situ hybridization for chromosomes X, Y, and 18 was used to determine XX, YY, XY, 1818, and total sex chromosome disomy in sperm nuclei. Poisson regression analysis was used to examine the association between aneuploidy rates and pyrethroid metabolites while adjusting for covariates.
Results
Between 25-56% of the sample were above the limit of detection (LOD) for the pyrethroid metabolites. All sex chromosome disomies were increased by 7-30% when comparing men with CDCCA and TDCCA levels above the LOD to those below the LOD. For 3PBA, compared to those below the LOD, those above the LOD had YY18 disomy rates 1.28 times higher (95% CI: 1.15, 1.42) whereas a reduced rate was seen for XY18 and total disomy (IRR = 0.82; 95% CI: 0.77, 0.87; IRR = 0.93; 95% CI: 0.87-0.97), and no association was seen for XX18 and 1818.
Conclusions
Our findings suggest that urinary concentrations of CDCCA and TDCCA above the LOD were associated with increased rates of aneuploidy. However the findings for 3BPA were not consistent. This is the first study to examine these relationships, and replication of our findings is needed before the association between pyrethroid metabolites and aneuploidy can be fully defined.http://deepblue.lib.umich.edu/bitstream/2027.42/134538/1/12940_2013_Article_854.pd
Environmental exposure to pyrethroids and sperm sex chromosome disomy: A cross-sectional study
Background
The role of environmental pesticide exposures, such as pyrethroids, and their relationship to sperm abnormalities are not well understood. This study investigated whether environmental exposure to pyrethroids was associated with altered frequency of sperm sex chromosome disomy in adult men. Methods
A sample of 75 subjects recruited through a Massachusetts infertility clinic provided urine and semen samples. Individual exposures were measured as urinary concentrations of three pyrethroid metabolites ((3-phenoxybenzoic acid (3PBA), cis- and trans- 3-(2,2-Dichlorovinyl)-1-methylcyclopropane-1,2-dicarboxylic acid (CDCCA and TDCCA)). Multiprobe fluorescence in situ hybridization for chromosomes X, Y, and 18 was used to determine XX, YY, XY, 1818, and total sex chromosome disomy in sperm nuclei. Poisson regression analysis was used to examine the association between aneuploidy rates and pyrethroid metabolites while adjusting for covariates. Results
Between 25-56% of the sample were above the limit of detection (LOD) for the pyrethroid metabolites. All sex chromosome disomies were increased by 7-30% when comparing men with CDCCA and TDCCA levels above the LOD to those below the LOD. For 3PBA, compared to those below the LOD, those above the LOD had YY18 disomy rates 1.28 times higher (95% CI: 1.15, 1.42) whereas a reduced rate was seen for XY18 and total disomy (IRR = 0.82; 95% CI: 0.77, 0.87; IRR = 0.93; 95% CI: 0.87-0.97), and no association was seen for XX18 and 1818. Conclusions
Our findings suggest that urinary concentrations of CDCCA and TDCCA above the LOD were associated with increased rates of aneuploidy. However the findings for 3BPA were not consistent. This is the first study to examine these relationships, and replication of our findings is needed before the association between pyrethroid metabolites and aneuploidy can be fully defined
Dialkyl phosphate urinary metabolites and chromosomal abnormalities in human sperm.
BACKGROUND: The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. OBJECTIVES: This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. METHODS: Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. RESULTS: A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional increases between the third and fourth exposure quartiles. CONCLUSIONS: This is the first epidemiologic study of this size to examine the relationship between environmental OP exposures and human sperm disomy outcomes. Our findings suggest that increased disomy rates were associated with specific DAP metabolites, suggesting that the impacts of OPs on testis function need further characterization in epidemiologic studies