6 research outputs found

    Original Article

    Get PDF
    99 cases were operated while we could not use antibiotics. The author traced X-ray photos on paper and measured areas of the peeled cavities with a planimeter. Results were as follows. 1) 66 cases had increasing stage and the rates were more than 30 %. 2) Cases with good developments showed larger original areas (50〜100cm^2) and smaller increasing rates (less than 30 %). 3) Also their X-ray photos showed coinciding or almost coinciding lines of the apices of lungs and the bases of cavities, but we had to take precautions against suppuration when they showed a horizontal line several days after operation. 4) Most of too high degree of adhesion or thickning of pleura did not show good results. When we found a cord which we must manage with some procedures by pneumolysis we must attend to suppuration too. 5)We ought to resect 4th or 5th rib more than 20 cm and 5th or 4th several cm supplementary. 6) As a method of constriction we commend the INVAGI.NATION method. 7) The author noticed in a considerable number of cases that the areas of cavities increased again after they kept long balanced stages

    Atherosclerosis V, Proceeding of the Fifth International Symposium, A.M. Gotto, L.C. Smith, B. Allen, Spring Verlag, 1979(BOOK REVIEW)

    Get PDF
    Antiviral effect of micafungin on three strains of human rhinoviruses. H1HeLa cells were infected with human rhinovirus type 14 (A), 21 (B), or 71 (C) (100 CCID50) and immediately treated with indicated concentrations of micafungin. Three days after compound treatment antiviral activity was determined by the reduction of cytopathic effect using MTT assay. Cell viability of DMSO-treated cells was set to 0 % and that of uninfected cells was set to 100 %. (TIF 100 kb

    Additional file 2: Figure S2. of Antiviral activity of micafungin against enterovirus 71

    No full text
    Micafungin inhibits the replication of CVB replicon. (A) Vero cells were transfected with in vitro transcribed CVB3 replicon RNAs, instantly treated with indicated concentrations of micafungin for 8 hours and then assayed for firefly luciferase activity. Luciferase activity of DMSO-treated cells was set to 100 %. (B) At the same condition another set of CVB3 replicon-transfected cells were assayed for cell viability by using CellTiter-Glo reagent. Activity of DMSO-treated cells was set to 100 %. (TIF 100 kb

    Structure-Based Discovery of Novel Cyclophilin A Inhibitors for the Treatment of Hepatitis C Virus Infections

    No full text
    Hepatitis C virus (HCV) is a major cause of end-stage liver disease. Direct-acting antivirals (DAAs), including inhibitors of nonstructural proteins (NS3/4A protease, NS5A, and NS5B polymerase), represent key components of anti-HCV treatment, but these are associated with increased drug resistance and toxicity. Thus, the development of host-targeted antiviral agents, such as cyclophilin A inhibitors, is an alternative approach for more effective, selective, and safer treatment. Starting with the discovery of a bis-amide derivative <b>5</b> through virtual screening, the lead compound <b>25</b> was developed using molecular modeling-based design and systematic exploration of the structure–activity relationship. The lead <b>25</b> lacked cytotoxicity, had potent anti-HCV activity, and showed selective and high binding affinity for CypA. Unlike cyclosporin A, <b>25</b> lacked immunosuppressive effects, successfully inhibited the HCV replication, restored host immune responses without acute toxicity in vitro and in vivo, and exhibited a high synergistic effect in combination with other drugs. These findings suggest that the bis-amides have significant potential to extend the arsenal of HCV therapeutics

    Structure-Based Discovery of Novel Cyclophilin A Inhibitors for the Treatment of Hepatitis C Virus Infections

    No full text
    Hepatitis C virus (HCV) is a major cause of end-stage liver disease. Direct-acting antivirals (DAAs), including inhibitors of nonstructural proteins (NS3/4A protease, NS5A, and NS5B polymerase), represent key components of anti-HCV treatment, but these are associated with increased drug resistance and toxicity. Thus, the development of host-targeted antiviral agents, such as cyclophilin A inhibitors, is an alternative approach for more effective, selective, and safer treatment. Starting with the discovery of a bis-amide derivative <b>5</b> through virtual screening, the lead compound <b>25</b> was developed using molecular modeling-based design and systematic exploration of the structure–activity relationship. The lead <b>25</b> lacked cytotoxicity, had potent anti-HCV activity, and showed selective and high binding affinity for CypA. Unlike cyclosporin A, <b>25</b> lacked immunosuppressive effects, successfully inhibited the HCV replication, restored host immune responses without acute toxicity in vitro and in vivo, and exhibited a high synergistic effect in combination with other drugs. These findings suggest that the bis-amides have significant potential to extend the arsenal of HCV therapeutics
    corecore