16 research outputs found

    Complementary genetic and functional analyses of genes involved in adiposity.

    Get PDF
    Leptin is a 16-kDa protein that is primarily secreted by adipose tissue. It affects body mass regulation by constituting part of the adipostat, that acts to alert the brain of the body's stored energy levels. Additional roles in immune function, reproduction and inflammation are known.Genetic studies of single nucleotide polymorphisms (SNPs), that exist in the extracellular domain of the leptin receptor gene, were undertaken in a population of European Caucasian postmenopausal women to investigate associations with indicators of adiposity. Homozygosity of the G allele of the LYS109ARG SNP was associated with lower mean fat mass levels and BMI. Furthermore, linkage disequilibrium was detected between this SNP and GLN223ARG, which in previous studies was also associated with indicators of adiposity. No associations were found between the LYS656ASN SNP and the tested phenotypes.To complement genetic studies of the leptin receptor, cDNA constructs representing different combinations of the alleles for SNPs in the leptin receptor were generated and subsequent expression of protein variants was conducted in COS-7 cells. Using a radioactive ligand-binding assay, labelled leptin was shown to specifically bind to the LYS109ARG223 and GLN223ARG protein variants, thereby testing the effect of the GLN223ARG mutation on LBA Preliminary data, suggest that the ARG allele appeared to bind less leptin than the GLN.Genetic studies were carried out on polymorphisms in related candidate genes. A promoter polymorphism (G-2548 A) in the leptin gene was associated with lower mean BMI and leptin levels in a cohort of European Caucasian postmenopausal womenIndividuals who lacked the 2 repeat allele of the variable number tandem repeat (VNTR) polymorphism present in intron two of the interleukin 1 receptor antagonist gene had an association with lower leptin levels but not BMI or fat mass. This suggests a potential feedback and / or cross-talk mechanism between leptin and members of the IL-1 family of cytokines in processes other than adiposity. Immunity and inflammation are processes where the interleukin one receptor antagonist protein has a prominent role and in which the function of leptin is increasingly being investigated, therefore an interaction between the two cytokines may be specific for these conditions.The TNF alpha (G-308 A) SNP was also investigated but no associations were observed between this SNP and the phenotypes in the postmenopausal cohort. To investigate the influence of the leptin receptor gene in conditions at the opposite end of the body weight spectrum to obesity, a case-control association study was undertaken to compare allele frequencies of the LYS109 ARG, GLN223ARG and LYS656ASN leptin receptor SNPs between anorexic women and controls. No significant differences were observed in allele or haplotype frequencies

    No evidence for parental imprinting of mouse 22q11 gene orthologues

    Get PDF
    Non-mendelian factors may influence CNS phenotypes in patients with 22q11 deletion syndrome (22q11DS, also known as DiGeorge or Velocardiofacial Syndrome), and similar mechanisms may operate in mice carrying a deletion of one or more 22q11 gene orthologues. Accordingly, we examined the influence of parent of origin on expression of 25 murine 22q11 orthologues in the developing and mature CNS using SNP-based analysis in interspecific crosses, as well as quantification of mRNA in a murine model of 22q11DS. We found no evidence for absolute genomic imprinting or silencing. All 25 genes are biallelically expressed in the developing and adult brain. Furthermore, if more subtle forms of allelic biasing are present, they are very small in magnitude, and most likely beyond the resolution of currently available quantitative approaches. Given the high degree of similarity of human 22q11 and the orthologous region of mmChr16, genomic imprinting most likely cannot explain apparent parent-of-origin effects in 22q11DS

    Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)

    Get PDF
    BACKGROUND: Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control. METHODS: Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: 5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease. INTERPRETATION: International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems

    Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex

    No full text
    Proper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrate a novel and essential role for c-Jun N-terminal kinase (JNK) signaling in guiding the pioneering population of cortical interneurons into the mouse cerebral cortex. Migrating cortical interneurons express Jnk proteins at the entrance to the cortical rudiment and have enriched expression of Jnk1 relative to noninterneuronal cortical cells. Pharmacological blockade of JNK signaling in ex vivo slice cultures resulted in dose-dependent and highly specific disruption of interneuron migration into the nascent cortex. Time-lapse imaging revealed that JNK-inhibited cortical interneurons advanced slowly and assumed aberrant migratory trajectories while traversing the cortical entry zone. In vivo analyses of JNK-deficient embryos supported our ex vivo pharmacological data. Deficits in interneuron migration were observed in Jnk1 but not Jnk2 single nulls, and those migratory deficits were further exacerbated when homozygous loss of Jnk1 was combined with heterozygous reduction of Jnk2. Finally, genetic ablation of Jnk1 and Jnk2 from cortical interneurons significantly perturbed migration in vivo, but not in vitro, suggesting JNK activity functions to direct their guidance rather than enhance their motility. These data suggest JNK signaling, predominantly mediated by interneuron expressed Jnk1, is required for guiding migration of cortical interneurons into and within the developing cerebral cortex

    Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome

    No full text
    Interneurons are thought to be a primary pathogenic target for several behavioral disorders that arise during development, including schizophrenia and autism. It is not known, however, whether genetic lesions associated with these diseases disrupt established molecular mechanisms of interneuron development. We found that diminished 22q11.2 gene dosage—the primary genetic lesion in 22q11.2 deletion syndrome (22q11.2 DS)—specifically compromises the distribution of early-generated parvalbumin-expressing interneurons in the Large Deletion (LgDel) 22q11.2DS mouse model. This change reflects cell-autonomous disruption of interneuron migration caused by altered expression of the cytokine C-X-C chemokine receptor type 4 (Cxcr4), an established regulator of this process. Cxcr4 is specifically reduced in LgDel migrating interneurons, and genetic analysis confirms that diminished Cxcr4 alters interneuron migration in LgDel mice. Thus, diminished 22q11.2 gene dosage disrupts cortical circuit development by modifying a critical molecular signaling pathway via Cxcr4 that regulates cortical interneuron migration and placement

    Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation

    No full text
    Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(−/−) mice are not recovered live at birth, and over 60% of Ranbp1(−/−) embryos are exencephalic. Non-exencephalic Ranbp1(−/−) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(−/−) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(−/−)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(−/−) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion

    22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development.

    No full text
    We asked whether key morphogenetic signaling pathways interact with 22q11 gene dosage to modulate the severity of cranial or cardiac anomalies in DiGeorge/22q1 deletion syndrome (22q11DS). Sonic hedgehog (Shh) and retinoic acid (RA) signaling is altered in the brain and heart—clinically significant 22q11DS phenotypic sites—in LgDel mouse embryos, an established 22q11DS model. LgDel embryos treated with cyclopamine, an Shh inhibitor, or carrying mutations in Gli3(Xtj), an Shh-signaling effector, have morphogenetic anomalies that are either not seen, or seen at significantly lower frequencies in control or single-mutant embryos. Similarly, RA exposure or genetic loss of RA function via heterozygous mutation of the RA synthetic enzyme Raldh2 induces novel cranial anomalies and enhances cardiovascular phenotypes in LgDel but not other genotypes. These changes are not seen in heterozygous Tbx1 mutant embryos—a 22q11 gene thought to explain much of 22q11DS pathogenesis—in which Shh or RA signaling has been similarly modified. Our results suggest that full dosage of 22q11 genes beyond Tbx1 establish an adaptive range for morphogenetic signaling via Shh and RA. When this adaptive range is constricted by diminished dosage of 22q11 genes, embryos are sensitized to otherwise benign changes in Shh and RA signaling. Such sensitization, in the face of environmental or genetic factors that modify Shh or RA signaling, may explain variability in 22q11DS morphogenetic phenotypes

    Ranbp1

    No full text

    Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development.

    No full text
    Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic “model” syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that “modeling a model”, in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development
    corecore