2,993 research outputs found

    Averaging of the electron effective mass in multicomponent transparent conducting oxides

    Get PDF
    We find that layered materials composed of various oxides of cations with s2s^2 electronic configuration, XY2XY_2O4_4, XX=In or Sc, YY=Ga, Zn, Al, Cd and/or Mg, exhibit isotropic electron effective mass which can be obtained via averaging over those of the corresponding single-cation oxide constituents. This effect is due to a hybrid nature of the conduction band formed from the s-states of {\it all} cations and the oxygen p-states. Moreover, the observed insensitivity of the electron effective mass to the oxygen coordination and to the distortions in the cation-oxygen chains suggests that similar behavior can be expected in technologically important amorphous state. These findings significantly broaden the range of materials as efficient transparent conductor hosts.Comment: Figures with higher resolution include

    Unconventional approaches to combine optical transparency with electrical conductivity

    Full text link
    Combination of electrical conductivity and optical transparency in the same material -- known to be a prerogative of only a few oxides of post-transition metals, such as In, Sn, Zn and Cd -- manifests itself in a distinctive band structure of the transparent conductor host. While the oxides of other elements with s2s^2 electronic configuration, for example, Mg, Ca, Sc and Al, also exhibit the desired optical and electronic features, they have not been considered as candidates for achieving good electrical conductivity because of the challenges of efficient carrier generation in these wide-bandgap materials. Here we demonstrate that alternative approaches to the problem not only allow attaining the transport and optical properties which compete with those in currently utilized transparent conducting oxides (TCO), but also significantly broaden the range of materials with a potential of being developed into novel functional transparent conductors.Comment: Accepted for publicatio

    Work hardening behavior in a steel with multiple TRIP mechanisms

    Full text link
    Transformation induced plasticity (TRIP) behavior was studied in steel with composition Fe-0.07C-2.85Si-15.3Mn-2.4Al-0.017N that exhibited two TRIP mechanisms. The initial microstructure consisted of both {\epsilon}- and {\alpha}-martensites with 27% retained austenite. TRIP behavior in the first 5% strain was predominately austenite transforming to {\epsilon}-martensite (Stage I), but upon saturation of Stage I, the {\epsilon}-martensite transformed to {\alpha}-martensite (Stage II). Alloy segregation also affected the TRIP behavior with alloy rich regions producing TRIP just prior to necking. This behavior was explained by first principle calculations that revealed aluminum significantly affected the stacking fault energy in Fe-Mn-Al-C steels by decreasing the unstable stacking fault energy and promoting easy nucleation of {\epsilon}-martensite. The addition of aluminum also raised the intrinsic stacking fault energy and caused the {\epsilon}-martensite to be unstable and transform to {\alpha}-martensite under further deformation. The two stage TRIP behavior produced a high strain hardening exponent of 1.4 and led to ultimate tensile strength of 1165 MPa and elongation to failure of 35%.Comment: submitted to Met. Mater. Trans. A manuscript E-TP-12-953-

    Electronic properties of layered multicomponent wide-bandgap oxides: a combinatorial approach

    Get PDF
    The structural, electronic, and optical properties of twelve multicomponent oxides with layered structure, RAMO4_4, where R3+^{3+}=In or Sc; A3+^{3+}=Al or Ga; and M2+^{2+}=Ca, Cd, Mg, or Zn, are investigated using first-principles density functional approach. The compositional complexity of RAMO4_4 leads to a wide range of band gap values varying from 2.45 eV for InGaCdO4_4 to 6.29 eV for ScAlMgO4_4. Strikingly, despite the different band gaps in the oxide constituents, namely, 2-4 eV in CdO, In2_2O3_3, or ZnO; 5-6 for Ga2_2O3_3 or Sc2_2O3_3; and 7-9 eV in CaO, MgO, or Al2_2O3_3, the bottom of the conduction band in the multicomponent oxides is formed from the s-states of all cations and their neighboring oxygen p-states. We show that the hybrid nature of the conduction band in multicomponent oxides originates from the unusual five-fold atomic coordination of A3+^{3+} and M2+^{2+} cations which enables the interaction between the spatially-spread s-orbitals of adjacent cations via shared oxygen atoms. The effect of the local atomic coordination on the band gap, the electron effective mass, the orbital composition of the conduction band, and the expected (an)isotropic character of the electron transport in layered RAMO4_4 is thoroughly discussed.Comment: 15 page

    Magnetically Mediated Transparent Conductors: In2_2O3_3 doped with Mo

    Get PDF
    First-principles band structure investigations of the electronic, optical and magnetic properties of Mo-doped In2_2O3_3 reveal the vital role of magnetic interactions in determining both the electrical conductivity and the Burstein-Moss shift which governs optical absorption. We demonstrate the advantages of the transition metal doping which results in smaller effective mass, larger fundamental band gap and better overall optical transmission in the visible -- as compared to commercial Sn-doped In2_2O3_3. Similar behavior is expected upon doping with other transition metals opening up an avenue for the family of efficient transparent conductors mediated by magnetic interactions

    Hopping versus bulk conductivity in transparent oxides: 12CaO - 7Al₂O₃

    Get PDF
    First-principles calculations of the mayenite-based oxide, [Ca12Al14O32]2+(2e-), reveal the mechanism responsible for its high conductivity. A detailed comparison of the electronic and optical properties of this material with those of the recently discovered transparent conducting oxide, H-doped UV-activated Ca12Al14O33, allowed us to conclude that the enhanced conductivity in [Ca12Al14O32]2+(2e-) is achieved by elimination of the Coulomb blockade of the charge carriers. This results in a transition from variable range-hopping behavior with a Coulomb gap in H-doped UV-irradiated Ca12Al14O33, to bulk conductivity in [Ca12Al14O32]2+(2e-). Further, the high degree of delocalization of the conduction electrons obtained in [Ca12Al14O32]2+(2e-) indicates that it cannot be classified as an electride, as originally suggested

    Electronic Structure of Superconducting MgBâ‚‚ and Related Binary and Ternary Borides

    Get PDF
    First-principles full potential linear muffin-tin orbital-generalized gradient approximation electronic structure calculations of the new medium-Tc superconductor (MTSC) MgB2 and related diborides indicate that superconductivity in these compounds is related to the existence of Px,y-band holes at the γ point. Based on these calculations, we explain the absence of medium-Tc superconductivity for BeB2, AlB2, ScB2, and YB2. The simulation of a number of MgB2-based ternary systems using a supercell approach demonstrates that (i) the electron doping of MgB2 (i.e., MgB2-yXy with X=Be, C, N, O) and the creation of defects in the boron sublattice (nonstoichiometric MgB2-y) are not favorable for superconductivity, and (ii) a possible way of searching for similar or higher MTSC should be via hole doping of MgB2 (CaB2) or isoelectronic substitution of Mg (i.e., Mg1-xMxB2 with M = Be, Ca, Li, Na, Cu, Zn) or creating layered superstructures of the MgB2/CaB2 type

    Tuning the properties of complex transparent conducting oxides: role of crystal symmetry, chemical composition and carrier generation

    Get PDF
    The electronic properties of single- and multi-cation transparent conducting oxides (TCOs) are investigated using first-principles density functional approach. A detailed comparison of the electronic band structure of stoichiometric and oxygen deficient In2_2O3_3, α\alpha- and β\beta-Ga2_2O3_3, rock salt and wurtzite ZnO, and layered InGaZnO4_4 reveals the role of the following factors which govern the transport and optical properties of these TCO materials: (i) the crystal symmetry of the oxides, including both the oxygen coordination and the long-range structural anisotropy; (ii) the electronic configuration of the cation(s), specifically, the type of orbital(s) -- ss, pp or dd -- which form the conduction band; and (iii) the strength of the hybridization between the cation's states and the p-states of the neighboring oxygen atoms. The results not only explain the experimentally observed trends in the electrical conductivity in the single-cation TCO, but also demonstrate that multicomponent oxides may offer a way to overcome the electron localization bottleneck which limits the charge transport in wide-bandgap main-group metal oxides. Further, the advantages of aliovalent substitutional doping -- an alternative route to generate carriers in a TCO host -- are outlined based on the electronic band structure calculations of Sn, Ga, Ti and Zr-doped InGaZnO4_4. We show that the transition metal dopants offer a possibility to improve conductivity without compromising the optical transmittance

    Half-metallicity and efficient spin injection in AlN/GaN:Cr (0001) heterostructure

    Get PDF
    First-principles investigations of the structural, electronic and magnetic properties of Cr-doped AlN/GaN (0001) heterostructures reveal that Cr segregates into the GaN region, that these interfaces retain their important half-metallic character and thus yield efficient (100 %) spin polarized injection from a ferromagnetic GaN:Cr electrode through an AlN tunnel barrier - whose height and width can be controlled by adjusting the Al concentration in the graded bandgap engineered Al(1-x)Ga(x)N (0001) layers.Comment: submitted for publicatio
    • …
    corecore