Hopping versus bulk conductivity in transparent oxides: 12CaO - 7Al₂O₃

Abstract

First-principles calculations of the mayenite-based oxide, [Ca12Al14O32]2+(2e-), reveal the mechanism responsible for its high conductivity. A detailed comparison of the electronic and optical properties of this material with those of the recently discovered transparent conducting oxide, H-doped UV-activated Ca12Al14O33, allowed us to conclude that the enhanced conductivity in [Ca12Al14O32]2+(2e-) is achieved by elimination of the Coulomb blockade of the charge carriers. This results in a transition from variable range-hopping behavior with a Coulomb gap in H-doped UV-irradiated Ca12Al14O33, to bulk conductivity in [Ca12Al14O32]2+(2e-). Further, the high degree of delocalization of the conduction electrons obtained in [Ca12Al14O32]2+(2e-) indicates that it cannot be classified as an electride, as originally suggested

    Similar works