56 research outputs found

    Nanostructured metal-fullerene field emission cathode

    Get PDF
    One of the important properties of carbon nanostructures is their cold electron emission ability. Carbon nanotubes and other nanostructures are capable of emitting high currents at relatively low electrical fields. They are already used in functional devices such as field emitters. The conventional method of carbon nanostructured cathodes manufacturing is thin film nanocarbon deposition using CVD process on electrically conducting substrate like metal or doped silicon plates. The alternative way of manufacturing of carbon field emission cathodes is based on a special processing of carbon microfibers or composite materials in metal holders. We used the similar approach to produce composite metal-nanocarbon material which may be easily processed and shaped to produce an effective field emission cathode which can be easily fixed an any environment. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2058

    Topical Issues for Particle Acceleration Mechanisms in Astrophysical Shocks

    Get PDF
    Particle acceleration at plasma shocks appears to be ubiquitous in the universe, spanning systems in the heliosphere, supernova remnants, and relativistic jets in distant active galaxies and gamma-ray bursts. This review addresses some of the key issues for shock acceleration theory that require resolution in order to propel our understanding of particle energization in astrophysical environments. These include magnetic field amplification in shock ramps, the non-linear hydrodynamic interplay between thermal ions and their extremely energetic counterparts possessing ultrarelativistic energies, and the ability to inject and accelerate electrons in both non-relativistic and relativistic shocks. Recent observational developments that impact these issues are summarized. While these topics are currently being probed by astrophysicists using numerical simulations, they are also ripe for investigation in laboratory experiments, which potentially can provide valuable insights into the physics of cosmic shocks.Comment: 13 pages, no figures. Invited review, accepted for publication in Astrophysics and Space Science, as part of the HEDLA 2006 conference proceeding

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    • 

    corecore