5 research outputs found

    An efficient antioxidant system and heavy metal exclusion from leaves make Solanum cheesmaniae more tolerant to Cu than its cultivated counterpart

    Get PDF
    Copper (Cu) is an abundant metal in the environment coming from anthropogenic activities and natural sources that, in excess, easily becomes phytotoxic to most species, being its accumulation in plants considered an environmental threat. This study aimed to compare the physiological and molecular responses of Solanum lycopersicum and its wild counterpart Solanum cheesmaniae to Cu stress. In particular, we wanted to address the hypothesis that S. cheesmaniae is more adapted to Cu stress than S. lycopersicum, since the former is equipped with a more efficient antioxidant defense system than the latter. Biomarkers of oxidative status (lipid peroxidation, hydrogen peroxide (H2O2) and superoxide anion (O.− 2 ) levels) revealed a more pronounced imbalance in the redox homeostasis in shoots of S. lycopersicum than in S. cheesmaniae in response to Cu. Furthermore, the activity of key antioxidant enzymes clearly differed in both species in response to Cu. Catalase (CAT) activity increased in S. cheesmaniae shoots but decreased in the domestic species, as well as ascorbate peroxidase (APX). Both species preferentially accumulated Cu in the radicular system, although a great increase in the aerial parts of S. lycopersicum was measured, while in leaves of Cu- treated S. cheesmaniae, the levels of Cu were not changed. Overall, results validated the hypothesis that S. cheesmaniae is more tolerant to excess Cu than S. lycopersicum and the data provided will help the development of breeding strategies toward the improvement of the resistance/tolerance of cultivated tomato species to heavy metal stress.This research was partially supported by national funds provided by Foundation for Science and Technology (FCT) through PEst-OE/BIA/UI4046/2014 (FCT through BioISI) and through the research project PTDC/ AGR-PRO/7028/2014.info:eu-repo/semantics/publishedVersio

    Cadmium and copper toxicity for tomato seedlings

    Full text link
    We studied cadmium (Cd) and copper (Cu) toxicity in tomato, their accumulation in plant organs and their ability to induce phytochelatin synthesis. The seedlings were cultivated in nutrient solution supplemented with increased concentrations of CdCl2 or CuSO4 from 0 to 50 µM. After 7 days of treatment, plants were harvested and the dry weight, the amount of thiobarbituric acid-reactive substances (TBARS), Cd and Cu contents and SH groups rich peptides were determined. We found that Cd and Cu decrease tomato growth, notably at high Cu levels. Cd and Cu concentrations in plant organs increased with applied amounts. Cd and Cu concentrations were the highest in roots. The amount of thiobarbituric acid-reactive substances, that estimate the lipid peroxidation, was increased with heavy metal exposure and was, mainly, higher in roots with Cu treatment

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Full text link
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Full text link
    International audienc
    corecore