6 research outputs found

    Oral versus intramuscular administration of vitamin B12 for vitamin B12 deficiency in primary care : a pragmatic, randomised, non-inferiority clinical trial (OB12)

    Get PDF
    The trial was financed by Ministerio de Sanidad y Consumo Español through their call for independent clinical research, Orden Ministerial SAS/2377, 2010 (EC10-115, EC10-116, EC10-117, EC10-119, EC10-122); CAIBER—Spanish Clinical Research Network, Instituto de Salud Carlos III (ISCIII) (CAI08/010044); and Gerencia Asistencial de Atención Primaria de Madrid. This study is also supported by the Spanish Clinical Research Network (SCReN), funded by ISCIII-Subdirección General de Evaluación y Fomento de la Investigación, project number PT13/0002/0007, within the National Research Program I+D+I 2013-2016 and co-funded with European Union ERDF funds (European Regional Development Fund). This project received a grant for the translation and publication of this article from the Foundation for Biomedical Research and Innovation in Primary Care (FIIBAP) Call 2017 for grants to promote research programs.Objectives To compare the effectiveness of oral versus intramuscular (IM) vitamin B12 (VB12) in patients aged ≥65 years with VB12 deficiency. Design Pragmatic, randomised, non-inferiority, multicentre trial in 22 primary healthcare centres in Madrid (Spain). Participants 283 patients ≥65 years with VB12 deficiency were randomly assigned to oral (n=140) or IM (n=143) treatment arm. Interventions The IM arm received 1 mg VB12 on alternate days in weeks 1–2, 1 mg/week in weeks 3–8 and 1 mg/month in weeks 9–52. The oral arm received 1 mg/day in weeks 1–8 and 1 mg/week in weeks 9–52. Main outcomes Serum VB12 concentration normalisation (≥211 pg/mL) at 8, 26 and 52 weeks. Non-inferiority would be declared if the difference between arms is 10% or less. Secondary outcomes included symptoms, adverse events, adherence to treatment, quality of life, patient preferences and satisfaction. Results The follow-up period (52 weeks) was completed by 229 patients (80.9%). At week 8, the percentage of patients in each arm who achieved normal B12 levels was well above 90%; the differences in this percentage between the oral and IM arm were −0.7% (133 out of 135 vs 129 out of 130; 95% CI: −3.2 to 1.8; p>0.999) by per-protocol (PPT) analysis and 4.8% (133 out of 140 vs 129 out of 143; 95% CI: −1.3 to 10.9; p=0.124) by intention-to-treat (ITT) analysis. At week 52, the percentage of patients who achieved normal B12 levels was 73.6% in the oral arm and 80.4% in the IM arm; these differences were −6.3% (103 out of 112 vs 115 out of 117; 95% CI: −11.9 to −0.1; p=0.025) and −6.8% (103 out of 140 vs 115 out of 143; 95% CI: −16.6 to 2.9; p=0.171), respectively. Factors affecting the success rate at week 52 were age, OR=0.95 (95% CI: 0.91 to 0.99) and having reached VB12 levels ≥281 pg/mL at week 8, OR=8.1 (95% CI: 2.4 to 27.3). Under a Bayesian framework, non-inferiority probabilities (Δ>−10%) at week 52 were 0.036 (PPT) and 0.060 (ITT). Quality of life and adverse effects were comparable across groups. 83.4% of patients preferred the oral route. Conclusions Oral administration was no less effective than IM administration at 8 weeks. Although differences were found between administration routes at week 52, the probability that the differences were below the non-inferiority threshold was very low.Publisher PDFPeer reviewe

    Effectiveness of a strategy that uses educational games to implement clinical practice guidelines among Spanish residents of family and community medicine (e-EDUCAGUIA project):A clinical trial by clusters

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias FIS Grant Number PI11/0477 ISCIII.-REDISSEC Proyecto RD12/0001/0012 AND FEDER Funding.Background: Clinical practice guidelines (CPGs) have been developed with the aim of helping health professionals, patients, and caregivers make decisions about their health care, using the best available evidence. In many cases, incorporation of these recommendations into clinical practice also implies a need for changes in routine clinical practice. Using educational games as a strategy for implementing recommendations among health professionals has been demonstrated to be effective in some studies; however, evidence is still scarce. The primary objective of this study is to assess the effectiveness of a teaching strategy for the implementation of CPGs using educational games (e-learning EDUCAGUIA) to improve knowledge and skills related to clinical decision-making by residents in family medicine. The primary objective will be evaluated at 1 and 6months after the intervention. The secondary objectives are to identify barriers and facilitators for the use of guidelines by residents of family medicine and to describe the educational strategies used by Spanish teaching units of family and community medicine to encourage implementation of CPGs. Methods/design: We propose a multicenter clinical trial with randomized allocation by clusters of family and community medicine teaching units in Spain. The sample size will be 394 residents (197 in each group), with the teaching units as the randomization unit and the residents comprising the analysis unit. For the intervention, both groups will receive an initial 1-h session on clinical practice guideline use and the usual dissemination strategy by e-mail. The intervention group (e-learning EDUCAGUIA) strategy will consist of educational games with hypothetical clinical scenarios in a virtual environment. The primary outcome will be the score obtained by the residents on evaluation questionnaires for each clinical practice guideline. Other included variables will be the sociodemographic and training variables of the residents and the teaching unit characteristics. The statistical analysis will consist of a descriptive analysis of variables and a baseline comparison of both groups. For the primary outcome analysis, an average score comparison of hypothetical scenario questionnaires between the EDUCAGUIA intervention group and the control group will be performed at 1 and 6months post-intervention, using 95% confidence intervals. A linear multilevel regression will be used to adjust the model. Discussion: The identification of effective teaching strategies will facilitate the incorporation of available knowledge into clinical practice that could eventually improve patient outcomes. The inclusion of information technologies as teaching tools permits greater learning autonomy and allows deeper instructor participation in the monitoring and supervision of residents. The long-term impact of this strategy is unknown; however, because it is aimed at professionals undergoing training and it addresses prevalent health problems, a small effect can be of great relevance. Trial registration: ClinicalTrials.gov: NCT02210442.Publisher PDFPeer reviewe

    Oral versus intramuscular administration of vitamin B12 for the treatment of patients with vitamin B12 deficiency: a pragmatic, randomised, multicentre, non-inferiority clinical trial undertaken in the primary healthcare setting (Project OB12)

    No full text
    Abstract Background The oral administration of vitamin B12 offers a potentially simpler and cheaper alternative to parenteral administration, but its effectiveness has not been definitively demonstrated. The following protocol was designed to compare the effectiveness of orally and intramuscularly administered vitamin B12 in the treatment of patients ≥65 years of age with vitamin B12 deficiency. Methods/design The proposed study involves a controlled, randomised, multicentre, parallel, non-inferiority clinical trial lasting one year, involving 23 primary healthcare centres in the Madrid region (Spain), and patients ≥65 years of age. The minimum number of patients required for the study was calculated as 320 (160 in each arm). Bearing in mind an estimated 8-10% prevalence of vitamin B12 deficiency among the population of this age group, an initial sample of 3556 patients will need to be recruited. Eligible patients will be randomly assigned to one of the two treatment arms. In the intramuscular treatment arm, vitamin B12 will be administered as follows: 1 mg on alternate days in weeks 1 and 2, 1 mg/week in weeks 3–8,and 1 mg/month in weeks 9–52. In the oral arm, the vitamin will be administered as: 1 mg/day in weeks 1–8 and 1 mg/week in weeks 9–52. The main outcome variable to be monitored in both treatment arms is the normalisation of the serum vitamin B12 concentration at weeks 8, 26 and 52; the secondary outcome variables include the serum concentration of vitamin B12 (in pg/ml), adherence to treatment, quality of life (EuroQoL-5D questionnaire), patient 3satisfaction and patient preferences. All statistical tests will be performed with intention to treat and per protocol. Logistic regression with random effects will be used to adjust for prognostic factors. Confounding factors or factors that might alter the effect recorded will be taken into account in analyses. Discussion The results of this study should help establish, taking quality of life into account, whether the oral administration of vitamin B12 is an effective alternative to its intramuscular administration. If this administration route is effective, it should provide a cheaper means of treating vitamin B12 deficiency while inducing fewer adverse effects. Having such an alternative would also allow patient preferences to be taken into consideration at the time of prescribing treatment. Trial registration This trial has been registered with ClinicalTrials.gov, number NCT 01476007, and under EUDRACT number 2010-024129-20.</p
    corecore