372 research outputs found

    Active flux seasonality of the small dominant migratory crustaceans and mesopelagic fishes in the Gulf of California during June and October

    Get PDF
    The biological carbon pump is the process that transports carbon vertically out of the mixed layer in the ocean. Besides the sinking flux of organic particles, active flux due to the daily vertical migration of zooplankton and micronekton promotes a significant carbon transport not fully accounted for or understood in the world’s oceans. The diversity and abundance of epipelagic and mesopelagic species in the Gulf of California has been extensively studied, but the role of micronekton in carbon export has not yet been investigated. We studied the carbon flux promoted by juvenile and adult mesopelagic fishes and crustaceans (Decapoda and Euphausiidae) during the transition from the cold to warm period (June) and the onset of the warm season (October) in 2018. We provide the first estimation of migrant biomass and respiratory flux of the most abundant migratory species of mesopelagic fishes, decapods and euphausiids in the Gulf of California. The micronekton species collected accounted for a large biomass of mesopelagic fishes and pelagic crustaceans. The average migrant biomass estimates were 151.5 ± 101.2 mg C·m−2 during June and 90.9 ± 75.3 mg C·m−2 during October. The enzymatic activity of the electron transfer system (ETS) was measured as an estimate of their respiratory rates. Average specific ETS activity was significantly different between fishes and decapods, and between fishes and euphausiids (p < 0.05). The respiratory flux of fishes was predominant in the Gulf of California, followed by pelagic decapods and euphausiids. Seasonal changes in respiratory flux were observed for fishes (June: 6.1 ± 1.5 mg C·m−2·d−1; October: 3.2 ± 1.8 mg C·m−2·d−1) and decapods (June: 0.4 mg C·m−2·d−1; October: 0.7 ± 0.05 mg C·m−2·d−1). Respiratory flux estimation by crustaceans (decapods and euphausiids) and fishes together was 6.86 mg C·m−2·d−1 during June, and 4.21 mg C·m−2·d−1 during October 2018, suggesting a functional role of this large micronektonic fauna in the biological carbon export in this region.3,26

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore