24 research outputs found

    Mitigation of Radiation Induced Pulmonary Vascular Injury by Delayed Treatment with Captopril

    Get PDF
    Background and Objective: A single dose of 10 Gy radiation to the thorax of rats results in decreased total lung angiotensin-converting enzyme (ACE) activity, pulmonary artery distensibility and distal vascular density while increasing pulmonary vascular resistance (PVR) at 2 months post-exposure. In this study, we evaluate the potential of a renin-angiotensin system (RAS) modulator, the ACE inhibitor captopril, to mitigate this pulmonary vascular damage. Methods: Rats exposed to 10 Gy thorax only irradiation and age-matched controls were studied 2 months after exposure, during the development of radiation pneumonitis. Rats were treated, either immediately or 2 weeks after radiation exposure, with two doses of the ACE inhibitor, captopril, dissolved in their drinking water. To determine pulmonary vascular responses, we measured pulmonary haemodynamics, lung ACE activity, pulmonary arterial distensibility and peripheral vessel density. Results: Captopril, given at a vasoactive, but not a lower dose, mitigated radiation-induced pulmonary vascular injury. More importantly, these beneficial effects were observed even if drug therapy was delayed for up to 2 weeks after exposure. Conclusions: Captopril resulted in a reduction in pulmonary vascular injury that supports its use as a radiomitigator after an unexpected radiological event such as a nuclear accident

    Vascular Injury After Whole Thoracic X-Ray Irradiation in the Rat

    Get PDF
    Purpose To study vascular injury after whole thoracic irradiation with single sublethal doses of X-rays in the rat and to develop markers that might predict the severity of injury. Methods and Materials Rats that received 5- or 10-Gy thorax-only irradiation and age-matched controls were studied at 3 days, 2 weeks, and 1, 2, 5, and 12 months. Several pulmonary vascular parameters were evaluated, including hemodynamics, vessel density, total lung angiotensin-converting enzyme activity, and right ventricular hypertrophy. Results By 1 month, the rats in the 10-Gy group had pulmonary vascular dropout, right ventricular hypertrophy, increased pulmonary vascular resistance, increased dry lung weights, and decreases in total lung angiotensin-converting enzyme activity, as well as pulmonary artery distensibility. In contrast, irradiation with 5 Gy resulted in only a modest increase in right ventricular weight and a reduction in lung angiotensin-converting enzyme activity. Conclusion In a previous investigation using the same model, we observed that recovery from radiation-induced attenuation of pulmonary vascular reactivity occurred. In the present study, we report that deterioration results in several vascular parameters for ≤1 year after 10 Gy, suggesting sustained remodeling of the pulmonary vasculature. Our data support clinically relevant injuries that appear in a time- and dose-related manner after exposure to relatively low radiation doses

    Rattus Model Utilizing Selective Pulmonary Ischemia Induces Bronchiolitis Obliterans Organizing Pneumonia

    Get PDF
    Bronchiolitis obliterans organizing pneumonia (BOOP), a morbid condition when associated with lung transplant and chronic lung disease, is believed to be a complication of ischemia. Our goal was to develop a simple and reliable model of lung ischemia in the Sprague-Dawley rat that would produce BOOP. Unilateral ischemia without airway occlusion was produced by an occlusive slipknot placed around the left main pulmonary artery. Studies were performed 7 days later. Relative pulmonary and systemic flow to each lung was measured by injection of technetium Tc 99m macroaggregated albumin. Histological sections were examined for structure and necrosis and scored for BOOP. Apoptosis was detected by immunohistochemistry with an antibody against cleaved caspase 3. Pulmonary artery blood flow to left lungs was less than 0.1% of the cardiac output, and bronchial artery circulation was ~2% of aortic artery flow. Histological sections from ischemic left lungs consistently showed Masson bodies, inflammation, and young fibroblasts filling the distal airways and alveoli, consistent with BOOP. In quantitative evaluation of BOOP using epithelial changes, inflammation and fibrosis were higher in ischemic left lungs than right or sham-operated left lungs. Apoptosis was increased in areas exhibiting histological BOOP, but there was no histological evidence of necrosis. Toll-like receptor 4 expression was increased in ischemic left lungs over right. An occlusive slipknot around the main left pulmonary artery in rats produces BOOP, providing direct evidence that ischemia without immunomodulation or coinfection is sufficient to initiate this injury. It also affords an excellent model to study signaling and genetic mechanisms underlying BOOP

    Protection by Inhaled Hydrogen Therapy in a Rat Model of Acute Lung Injury can be Tracked \u3cem\u3ein vivo\u3c/em\u3e Using Molecular Imaging

    Get PDF
    Inhaled hydrogen gas (H2) provides protection in rat models of human acute lung injury (ALI). We previously reported that biomarker imaging can detect oxidative stress and endothelial cell death in vivo in a rat model of ALI. Our objective was to evaluate the ability of 99mTc-hexamethylpropyleneamineoxime (HMPAO) and 99mTc-duramycin to track the effectiveness of H2 therapy in vivo in the hyperoxia rat model of ALI. Rats were exposed to room air (normoxia), 98% O2 + 2% N2 (hyperoxia) or 98% O2 + 2% H2 (hyperoxia+H2) for up to 60 h. In vivo scintigraphy images were acquired following injection of 99mTc-HMPAO or 99mTc-duramycin. For hyperoxiarats, 99mTc-HMPAO and 99mTc-duramycin lung uptake increased in a time-dependent manner, reaching a maximum increase of 270% and 150% at 60 h, respectively. These increases were reduced to 120% and 70%, respectively, in hyperoxia+H2 rats. Hyperoxia exposure increased glutathione content in lung homogenate (36%) more than hyperoxia+H2 (21%), consistent with increases measured in 99mTc-HMPAO lung uptake. In 60-h hyperoxia rats, pleural effusion, which was undetectable in normoxia rats, averaged 9.3 gram/rat, and lung tissue 3-nitrotyrosine expression increased by 790%. Increases were reduced by 69% and 59%, respectively, in 60-h hyperoxia+H2 rats. This study detects and tracks the anti-oxidant and anti-apoptotic properties of H2 therapy in vivo after as early as 24 h of hyperoxia exposure. The results suggest the potential utility of these SPECT biomarkers for in vivo assessment of key cellular pathways in the pathogenesis of ALI and for monitoring responses to therapies

    Lung Injury Pathways: Adenosine Receptor 2B Signaling Limits Development of Ischemic Bronchiolitis Obliterans Organizing Pneumonia

    Get PDF
    Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Materials and Methods: Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague–Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. Results: Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Conclusion: Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury

    Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins

    Get PDF
    Objective—We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Approach and Results—Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter–binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Conclusions—Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction

    Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs

    Get PDF
    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study we have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ∼24 mg m-2 day-1 started orally in the drinking water at 7 days after irradiation and continued to ≥150 days) mitigated late effects in the lungs and kidneys after 12.5 Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 days after 13 Gy leg-out PBI. Furthermore lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg-1 day-1 from days 1-14) which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, we mitigated acute and delayed radiation injuries in multiple organs

    Polypharmacy to Mitigate Acute and Delayed Radiation Syndromes

    Get PDF
    There is a need for countermeasures to mitigate lethal acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE). In WAG/RijCmcr rats, ARS occurs by 30-days following total body irradiation (TBI), and manifests as potentially lethal gastrointestinal (GI) and hematopoietic (H-ARS) toxicities after >12.5 and >7 Gy, respectively. DEARE, which includes potentially lethal lung and kidney injuries, is observed after partial body irradiation >12.5 Gy, with one hind limb shielded (leg-out PBI). The goal of this study is to enhance survival from ARS and DEARE by polypharmacy, since no monotherapy has demonstrated efficacy to mitigate both sets of injuries. For mitigation of ARS following 7.5 Gy TBI, a combination of three hematopoietic growth factors (polyethylene glycol (PEG) human granulocyte colony-stimulating factor (hG-CSF), PEG murine granulocyte-macrophage-CSF (mGM-CSF), and PEG human Interleukin (hIL)-11), which have shown survival efficacy in murine models of H-ARS were tested. This triple combination (TC) enhanced survival by 30-days from ∼25% to >60%. The TC was then combined with proven medical countermeasures for GI-ARS and DEARE, namely enrofloxacin, saline and the angiotensin converting enzyme inhibitor, lisinopril. This combination of ARS and DEARE mitigators improved survival from GI-ARS, H-ARS, and DEARE after 7.5 Gy TBI or 13 Gy PBI. Circulating blood cell recovery as well as lung and kidney function were also improved by TC + lisinopril. Taken together these results demonstrate an efficacious polypharmacy to mitigate radiation-induced ARS and DEARE in rats

    Polypharmacy to Mitigate Acute and Delayed Radiation Syndromes

    Get PDF
    There is a need for countermeasures to mitigate lethal acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE). In WAG/RijCmcr rats, ARS occurs by 30-days following total body irradiation (TBI), and manifests as potentially lethal gastrointestinal (GI) and hematopoietic (H-ARS) toxicities after >12.5 and >7 Gy, respectively. DEARE, which includes potentially lethal lung and kidney injuries, is observed after partial body irradiation >12.5 Gy, with one hind limb shielded (leg-out PBI). The goal of this study is to enhance survival from ARS and DEARE by polypharmacy, since no monotherapy has demonstrated efficacy to mitigate both sets of injuries. For mitigation of ARS following 7.5 Gy TBI, a combination of three hematopoietic growth factors (polyethylene glycol (PEG) human granulocyte colony-stimulating factor (hG-CSF), PEG murine granulocyte-macrophage-CSF (mGM-CSF), and PEG human Interleukin (hIL)-11), which have shown survival efficacy in murine models of H-ARS were tested. This triple combination (TC) enhanced survival by 30-days from ∼25% to >60%. The TC was then combined with proven medical countermeasures for GI-ARS and DEARE, namely enrofloxacin, saline and the angiotensin converting enzyme inhibitor, lisinopril. This combination of ARS and DEARE mitigators improved survival from GI-ARS, H-ARS, and DEARE after 7.5 Gy TBI or 13 Gy PBI. Circulating blood cell recovery as well as lung and kidney function were also improved by TC + lisinopril. Taken together these results demonstrate an efficacious polypharmacy to mitigate radiation-induced ARS and DEARE in rats
    corecore