50 research outputs found
Machine-learning of atomic-scale properties based on physical principles
We briefly summarize the kernel regression approach, as used recently in
materials modelling, to fitting functions, particularly potential energy
surfaces, and highlight how the linear algebra framework can be used to both
predict and train from linear functionals of the potential energy, such as the
total energy and atomic forces. We then give a detailed account of the Smooth
Overlap of Atomic Positions (SOAP) representation and kernel, showing how it
arises from an abstract representation of smooth atomic densities, and how it
is related to several popular density-based representations of atomic
structure. We also discuss recent generalisations that allow fine control of
correlations between different atomic species, prediction and fitting of
tensorial properties, and also how to construct structural kernels---applicable
to comparing entire molecules or periodic systems---that go beyond an additive
combination of local environments
IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury
Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells
Background: Human immunodeficiency virus type 1 (HIV-1) induces neuronal dysfunction through host cellular factors and viral proteins including viral protein R (Vpr) released from infected macrophages/microglia. Vpr is important for infection of terminally differentiated cells such as macrophages. The objective of this study was to assess the effect of Vpr in the context of infectious virus particles on neuronal death through proinflammatory cytokines released from macrophages.Methods: Monocyte-derived macrophages (MDM) were infected with either HIV-1 wild type (HIV-1wt), Vpr deleted mutant (HIV-1{increment}Vpr) or mock. Cell lysates and culture supernatants from MDMs were analyzed for the expression and release of proinflammatory cytokines by quantitative reverse transcription-PCR and enzyme-linked immunosorbent assay respectively. Mitogen-activated protein kinases (MAPK) were analyzed in activated MDMs by western blots. Further, the effect of Vpr on neuronal apoptosis was examined using primary neurons exposed to culture supernatants from HIV-1wt, HIV-1{increment}Vpr or mock-infected MDMs by Annexin-V staining, MTT and Caspase - Glo® 3/7 assays. The role of interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α on neuronal apoptosis was also evaluated in the presence or absence of neutralizing antibodies against these cytokines.Results: HIV-1{increment}Vpr-infected MDMs exhibited reduced infection over time and specifically a significant downregulation of IL-1β, IL-8 and TNF-α at the transcriptional and/or protein levels compared to HIV-1wt-infected cultures. This downregulation was due to impaired activation of p38 and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) in HIV-1{increment}Vpr-infected MDMs. The association of SAPK/JNK and p38 to IL-1β and IL-8 production was confirmed by blocking MAPKs that prevented the elevation of IL-1β and IL-8 in HIV-1wt more than in HIV-1{increment}Vpr-infected cultures. Supernatants from HIV-1{increment}Vpr-infected MDMs containing lower concentrations of IL-1β, IL-8 and TNF-α as well as viral proteins showed a reduced neurotoxicity compared to HIV-1wt-infected MDM supernatants. Reduction of neuronal death in the presence of anti-IL-1β and anti-IL-8 antibodies only in HIV-1wt-infected culture implies that the effect of Vpr on neuronal death is in part mediated through released proinflammatory factors.Conclusion: Collectively, these results demonstrate the ability of HIV-1{increment}Vpr to restrict neuronal apoptosis through dysregulation of multiple proinflammatory cytokines in the infected target cells either directly or indirectly by suppressing viral replication. © 2012 Guha et al.; licensee BioMed Central Ltd
Potential energy surfaces of the first three singlet states of CH3Cl
The photodissociation of CH3Cl is an important source of atmospheric chlorine atoms. To more fully understand this reaction, potential energy surfaces of the ground state X 1 A' and the first two excited sing- lets (21A' and 11A", corresponding to the degenerate 1E at the ground state C3v equilibrium geometry) of CH3 Cl have been constructed through ab initio Complete Active Space SCF calculations. A X 1 A' -2 1 A' conical intersection was located, and the importance of this feature in the photolysis of the C–H bond after photoexcitation at 193 nm is discussed
The Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model
For the last 50 years, researchers have sought molecular models that can accurately reproduce water’s microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima near 223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ~208 K. A local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is found to be the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid wa- ter’s physical properties across broad ranges of thermodynamic states, including the so-called water’s “no man’s land” which is difficult to probe experimentally