102 research outputs found

    Recognition of l--homomethionine by methionyl-trna synthetase

    Get PDF
    Living cells commonly employ the 20 canonical amino acids for ribosomal protein synthesis, although a few other amino acids (such as selenocysteine or pyrrolysine) are also employed in rare cases. The natural repertoire of amino acids is therefore rather narrow. This limits the possibilities to engineer non-natural proteins with new properties, usable for therapeutic or industrial purpose. Therefore, a dominant trend in the field of protein engineering is to build up systems for incorporating non-natural amino acids during protein biosynthesis in vivo (reviewed in Xiao and Schultz, 2016). Although this strategy has been successful in several cases, all amino acids used to date were amino acids. Site-specific incorporation of a amino acid in a polypeptide would introduce unprecedented flexibility in the main chain, thereby enlarging the geometric possibilities for protein folding. It has recently been demonstrated, using an in vitro cell-free translation system, that the ribosome is able to efficiently incorporate amino acids at discrete sites in a polypeptide (Fujino et al, 2016). At this stage, a technological issue that needs to be resolved for in vivo synthesis of a protein containing amino acid residues is the design of aminoacyl-tRNA synthetases able to efficiently esterify the desired amino acids onto specific transfer RNAs. A recent study has shown that some E. coli aminoacyl-tRNA synthetases are indeed able to use amino acids as substrates (Melo Czekster et al, 2016). Our final goal is to optimize incorporation of methionine in polypeptides. To this aim, we have first characterized the binding and activation of L--homomethionine by E. coli methionyl-tRNA synthetase. It is demonstrated that activation of the amino acid occurs but at a markedly lower rate than activation of L--methionine. A 1.45 Å crystal structure of methionyl-tRNA synthetase complexed with the amino acid will also be presented. We will discuss how this structure is used for optimizing aminoacylation of tRNA with L--homomethionine. Fujino, T., Goto, Y., Suga, H. and Murakami, H. J Am Chem Soc, 2016, 138, 1962-1969. Melo Czekster, C., Robertson, W. E., Walker, A. S., Soll, D. and Schepartz, A. J Am Chem Soc, 2016, 138, 5194-5197. Cold Spring Harb Perspect Biol, 2016, vol8-9

    Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo

    Get PDF
    Incorporation of noncanonical amino acids into cellular proteins often requires engineering new aminoacyl-tRNA synthetase activity into the cell. A screening strategy that relies on cell-surface display of reactive amino acid side-chains was used to identify a diverse set of methionyl-tRNA synthetase (MetRS) mutants that allow efficient incorporation of the methionine (Met) analog azidonorleucine (Anl). We demonstrate that the extent of cell-surface labeling in vivo is a good indicator of the rate of Anl activation by the MetRS variant harbored by the cell. By screening at low Anl concentrations in Met-supplemented media, MetRS variants with improved activities toward Anl and better discrimination against Met were identified

    Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2

    No full text
    International audienceEukaryotic and archaeal translation initiation processes involve a heterotrimeric GTPase e/aIF2 crucial for accuracy of start codon selection. In eu-karyotes, the GTPase activity of eIF2 is assisted by a GTPase-activating protein (GAP), eIF5. In ar-chaea, orthologs of eIF5 are not found and aIF2 GT-Pase activity is thought to be non-assisted. However , no in vitro GTPase activity of the archaeal factor has been reported to date. Here, we show that aIF2 significantly hydrolyses GTP in vitro. Within aIF2␥, H97, corresponding to the catalytic histidine found in other translational GTPases, and D19, from the GKT loop, both participate in this activity. Several high-resolution crystal structures were determined to get insight into GTP hydrolysis by aIF2␥. In particular, a crystal structure of the H97A mutant was obtained in the presence of non-hydrolyzed GTP. This structure reveals the presence of a second magnesium ion bound to GTP and D19. Quantum chemical/molecular mechanical simulations support the idea that the second magnesium ion may assist GTP hydrolysis by helping to neutralize the developing negative charge in the transition state. These results are discussed in light of the absence of an identified GAP in archaea to assist GTP hydrolysis on aIF2

    Adenosine conformations of nucleotides bound to methionyl tRNA synthetase by transferred nuclear Overhauser effect spectroscopy.

    Get PDF
    International audienceThe conformations of MgATP and AMP bound to a monomeric tryptic fragment of methionyl tRNA synthetase have been investigated by two-dimensional proton transferred nuclear Overhauser effect spectroscopy (TRNOESY). The sample protocol was chosen to minimize contributions from adventitious binding of the nucleotides to the observed NOE. The experiments were performed at 500 MHz on three different complexes, E.MgATP, E.MgATP.L-methioninol, and E.AMP.L-methioninol. A starter set of distances obtained by fitting NOE build-up curves (not involving H5' and H5") were used to determine a CHARMm energy-minimized structure. The positioning of the H5' and H5" protons was determined on the basis of a conformational search of the torsion angle to obtain the best fit with the observed NOEs for their superposed resonance. Using this structure, a relaxation matrix was set up to calculate theoretical build-up curves for all of the NOEs and compare them with the observed curves. The final structures deduced for the adenosine moieties in the three complexes are very similar, and are described by a glycosidic torsion angle (chi) of 56 degrees +/- 5 degrees and a phase angle of pseudorotation (P) in the range of 47 degrees to 52 degrees, describing a 3(4)T-4E sugar pucker. The glycosidic torsion angle, chi, deduced here for this adenylyl transfer enzyme and those determined previously for three phosphoryl transfer enzymes (creatine kinase, arginine kinase, and pyruvate kinase), and one pyrophosphoryl enzyme (PRibPP synthetase), are all in the range 52 degrees +/- 8 degrees. The narrow range of values suggests a possible common motif for the recognition and binding of the adenosine moiety at the active sites of ATP-utilizing enzymes, irrespective of the point of cleavage on the phosphate chain

    Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA

    Get PDF
    International audienceHeterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2-GDPNP-tRNA complex. © The Author(s) 2012. Published by Oxford University Press

    Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique Features

    Get PDF
    International audienceEukaryotic initiation factor 2 (eIF2), a heterotrimeric guanosine triphosphatase, has a central role in protein biosynthesis by supplying methionylated initiator tRNA to the ribosomal translation initiation complex and by serving as a target for translational control in response to stress. Recent work identified a novel step indispensable for eIF2 function: assembly of eIF2 from its three subunits by the cell proliferation protein Cdc123. We report the first crystal structure of a Cdc123 representative, that from Schizosaccharomyces pombe, both isolated and bound to domain III of Saccharomyces cerevisiae eIF2 gamma. The structures show that Cdc123 resembles enzymes of the ATP-grasp family. Indeed, Cdc123 binds ATP-Mg2+, and conserved residues contacting ATP-Mg2+ are essential for Cdc123 to support eIF2 assembly and cell viability. A docking of eIF2 alpha gamma onto Cdc123, combined with genetic and biochemical experiments, allows us to propose a model explaining how Cdc123 participates in the biogenesis of eIF2 through facilitating assembly of eIF2 gamma to eIF2 alpha

    Switching from an Induced-Fit to a Lock-and-Key Mechanism in an Aminoacyl-tRNA Synthetase with Modified Specificity

    Get PDF
    Methionyl-tRNA synthetase (MetRS) specifically binds its methionine substrate in an induced-fit mechanism, with methionine binding causing large rearrangements. Mutated MetRS able to efficiently aminoacylate the methionine (Met) analog azidonorleucine (Anl) have been identified by saturation mutagenesis combined with in vivo screening procedures. Here, the crystal structure of such a mutated MetRS was determined in the apo form as well as complexed with Met or Anl (1.4 to 1.7 Å resolution) to reveal the structural basis for the altered specificity. The mutations result in both the loss of important contacts with Met and the creation of new contacts with Anl, thereby explaining the specificity shift. Surprisingly, the conformation induced by Met binding in wild-type MetRS already occurs in the apo form of the mutant enzyme. Therefore, the mutations cause the enzyme to switch from an induced-fit mechanism to a lock-and-key one, thereby enhancing its catalytic efficiency

    Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases.

    Get PDF
    International audienceCyclodipeptide synthases form cyclodipeptides from two aminoacyl transfer RNAs. They use a ping-pong mechanism that begins with transfer of the aminoacyl moiety of the first aminoacyl tRNA onto a conserved serine, yielding an aminoacyl enzyme. Combining X-ray crystallography, site-directed mutagenesis and affinity labelling of the cyclodipeptide synthase AlbC, we demonstrate that the covalent intermediate reacts with the aminoacyl moiety of the second aminoacyl tRNA, forming a dipeptidyl enzyme, and identify the aminoacyl-binding sites of the aminoacyl tRNAs

    Visualization of translation reorganization upon persistent ribosome collision stress in mammalian cells

    Get PDF
    Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ

    Visualization of translation reorganization upon persistent collision stress in mammalian cells

    Get PDF
    UNLABELLED: Aberrantly slow mRNA translation leads to ribosome stalling and subsequent collision with the trailing neighbor. Ribosome collisions have recently been shown to act as stress sensors in the cell, with the ability to trigger stress responses balancing survival and apoptotic cell-fate decisions depending on the stress level. However, we lack a molecular understanding of the reorganization of translation processes over time in mammalian cells exposed to an unresolved collision stress. Here we visualize the effect of a persistent collision stress on translation using in situ cryo electron tomography. We observe that low dose anisomycin collision stress leads to the stabilization of Z-site bound tRNA on elongating 80S ribosomes, as well as to the accumulation of an off-pathway 80S complex possibly resulting from collision splitting events. We visualize collided disomes in situ , occurring on compressed polysomes and revealing a stabilized geometry involving the Z-tRNA and L1 stalk on the stalled ribosome, and eEF2 bound to its collided rotated-2 neighbor. In addition, non-functional post-splitting 60S complexes accumulate in the stressed cells, indicating a limiting Ribosome associated Quality Control clearing rate. Finally, we observe the apparition of tRNA-bound aberrant 40S complexes shifting with the stress timepoint, suggesting a succession of different initiation inhibition mechanisms over time. Altogether, our work visualizes the changes of translation complexes under persistent collision stress in mammalian cells, indicating how perturbations in initiation, elongation and quality control processes contribute to an overall reduced protein synthesis. SUMMARY: Using in situ cryo electron tomography we visualized the reorganization of mammalian translation processes during a persistent collision stress
    corecore