98 research outputs found

    Detection of HI 21 cm-line absorption in the Warm Neutral Medium and in the Outer Arm of the Galaxy

    Get PDF
    Using the Westerbork Synthesis Radio Telescope, we have detected HI 21 cm-line absorption in the Warm Neutral Medium of the Galaxy toward the extragalactic source 3C147. This absorption, at an LSR velocity of -29+/-4 km/s with a full width at half maximum of 53+/-6 km/s, is associated with the Perseus Arm of the Galaxy. The observed optical depth is (1.9+/-0.2)*10**(-3). The estimated spin temperature of the gas is 3600+/-360 K. The volume density is 0.4 per cc assuming pressure equilibrium. Toward two other sources, 3C273 and 3C295, no wide HI 21 cm-line absorption was detected. The highest of the 3sigma lower limits on the spin temperature of the Warm Neutral Medium is 2600 K. In addition, we have also detected HI 21 cm-line absorption from high velocity clouds in the Outer Arm toward 3C147 and 3C380 at LSR velocities of -117.3, -124.5 and -113.7 km/s respectively. We find two distinct temperature components in the high velocity clouds with spin temperatures of greater than 1000 K and less than 200 K, respectively.Comment: 21 pages inclusive of 7 figures and 2 table

    Small-Scale Variations of HI Spectra from Interstellar Scintillatio

    Get PDF
    I suggest that radio-wave scattering by the interstellar plasma, in combination with subsonic gradients in the Doppler velocity of interstellar HI, is responsible for the observed small-scale variation in HI absorption spectra of pulsars. Velocity gradients on the order of 0.05 to 0.3 km/s across 1 AU can produce the observed variations. I suggest observational tests to distinguish between this model and the traditional picture of small-scale opacity variations from cloudlets.Comment: 24 pages, 2 figures, Latex, uses AASTe

    1420 MHz Continuum Absorption Towards Extragalactic Sources in the Galactic Plane

    Full text link
    We present a 21-cm emission-absorption study towards extragalactic sources in the Canadian Galactic Plane Survey (CGPS). We have analyzed HI spectra towards 437 sources with S > 150 mJy, giving us a source density of 0.6 sources per square degree at arcminute resolution. We present the results of a first analysis of the HI temperatures, densities, and feature statistics. Particular emphasis is placed on 5 features with observed spin temperatures below 40 K. We find most spin temperatures in the range from 40 K to 300 K. A simple HI two-component model constrains the bulk of the cold component to temperatures (T_c) between 40 K and 100 K. T_c peaks in the Perseus arm region and clearly drops off with Galactocentric radius, R, beyond that. The HI density follows this trend, ranging from a local value of 0.4 cm^{-3} to less than 0.1 cm^{-3} at R = 20 kpc. We find that HI emission alone on average traces about 75% of the total HI column density, as compared to the total inferred by the emission and absorption. Comparing the neutral hydrogen absorption to CO emission no correlation is found in general, but all strong CO emission is accompanied by a visible HI spectral feature. Finally, the number of spectral HI absorption features per kpc drop off exponentially with increasing R.Comment: 13 pages, 13 figures, Accepted for March 2004 Ap

    A FUSE survey of high-latitude Galactic molecular hydrogen

    Full text link
    Measurements of molecular hydrogen (H_2) column densities are presented for the first six rotational levels (J=0 to 5) for 73 extragalactic targets observed with FUSE. All of these have a final signal-to-noise ratio larger than \snlimit, and are located at galactic latitude |b|>20 deg. The individual observations were calibrated with the FUSE calibration pipeline CalFUSE version 2.1 or higher, and then carefully aligned in velocity. The final velocity shifts for all the FUSE segments are listed. H_2 column densities or limits are determined for the 6 lowest rotational (J) levels for each HI component in the line of sight, using a curve-of-growth approach at low column densities ~16.5), and Voigt-profile fitting at higher column densities. Detections include 73 measurements of low-velocity H_2 in the Galactic Disk and lower Halo. Eight sightlines yield non-detections for Galactic H_2. The measured column densities range from log N(H_2)=14 to log N(H_2)=20. Strong correlations are found between log N(H_2) and T_01, the excitation temperature of the H_2, as well as between log N(H_2) and the level population ratios (log (N(J')/N(J))). The average fraction of nuclei in molecular hydrogen (f(H_2)) in each sightline is calculated; however, because there are many HI clouds in each sightline, the physics of the transition from HI to H_2 can not be studied. Detections also include H2 in 16 intermediate-velocity clouds in the Galactic Halo (out of 35 IVCs). Molecular hydrogen is seen in one high-velocity cloud (the Leading Arm of the Magellanic Stream), although 19 high-velocity clouds are intersected; this strongly suggests that dust is rare or absent in these objects. Finally, there are five detections of H_2 in external galaxies.Comment: Accepted for ApJ Supplement. Note: figs 7 and 8 not included because astro-ph rejects them as too bi

    A search for soft X-ray emission associated with prominent high-velocity-cloud complexes

    Get PDF
    We correlate the ROSAT 1/4 keV all-sky survey with the Leiden/Dwingeloo HI survey, looking for soft X-ray signatures of prominent high-velocity-cloud (HVC) complexes. We study the transfer of 1/4 keV photons through the interstellar medium in order to distinguish variations in the soft X-ray background (SXRB) intensity caused by photoelectric absorption effects from those due to excess X-ray emission. The X-ray data are modelled as a combination of emission from the Local Hot Bubble (LHB) and emission from a distant plasma in the galactic halo and extragalactic sources. The X-ray radiation intensity of the galactic halo and extragalactic X-ray background is modulated by the photoelectric absorption of the intervening galactic interstellar matter. We show that large- and small-scale intensity variations of the 1/4 keV SXRB are caused by photoelectric absorption which is predominantly traced by the total N(HI) distribution. The extensive coverage of the two surveys supports evidence for a hot, X-ray emitting corona. We show that this leads to a good representation of the SXRB observations. For four large areas on the sky, we search for regions where the modelled and observed X-ray emission differ. We find that there is excess X-ray emission towards regions near HVC complexes C, D, and GCN. We suggest that the excess X-ray emission is positionally correlated with the high-velocity clouds. Some lines of sight towards HVCs also pass through significant amounts of intermediate-velocity gas, so we cannot constrain the possible role played by IVC gas in these directions of HVC and IVC overlap, in determining the X-ray excesses.Comment: 16 pages, 8 figures, accepted for publication in Astronomy & Astrophysics main journa

    The Structure of the Cold Neutral ISM on 10-100 Astronomical Unit Scales

    Full text link
    We have used the Very Long Baseline Array (VLBA) and the Very Large Array (VLA) to image Galactic neutral hydrogen in absorption towards four compact extragalactic radio sources with 10 milliarcsecond resolution. Previous VLBA data by Faison et al (1998) have shown the existence of prominent structures in the direction of the extragalactic source 3C~138 with scale sizes of 10-20 AU with changes in HI optical depth in excess of 0.8 ±\pm 0.1. In this paper we confirm the small scale \hi optical depth variations toward 3C~147 suggested earlier at a level up to 20 % ±\pm 5% . The sources 3C~119, 2352+495 and 0831+557 show no significant change in \hi optical depth across the sources with one sigma limits of 30%, 50%, and 100%. Of the seven sources recently investigated with the VLBA and VLA, only 3C~138 and 3C~147 show statistically significant variations in HI opacities. Deshpande (2000) have attempted to explain the observed small-scale structure as an extension of the observed power spectrum of structure on parsec size scales. The predictions of Deshpande (2000) are consistent with the VLBA HI data observed in the directions of a number of sources, including 3C~147, but are not consistent with our previous observations of the HI opacity structure toward 3C~138

    Are Compact High-Velocity Clouds Extragalactic Objects?

    Get PDF
    Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the Local Group model and would have HI volume densities of order 0.0003/cm^3. Clouds with these volume densities and the observed neutral hydrogen column densities will be largely ionized, even if exposed only to the extragalactic ionizing radiation field. Here we examine the implications of this process for models of CHVCs. We have modeled the ionization structure of spherical clouds (with and without dark matter halos) for a large range of densities and sizes, appropriate to CHVCs over the range of suggested distances, exposed to the extragalactic ionizing photon flux. Constant-density cloud models in which the CHVCs are at Local Group distances have total (ionized plus neutral) gas masses roughly 20-30 times larger than the neutral gas masses, implying that the gas mass alone of the observed population of CHVCs is about 40 billion solar masses. With a realistic (10:1) dark matter to gas mass ratio, the total mass in such CHVCs is a significant fraction of the dynamical mass of the Local Group, and their line widths would exceed the observed FWHM. Models with dark matter halos fare even more poorly; they must lie within approximately 200 kpc of the Galaxy. We show that exponential neutral hydrogen column density profiles are a natural consequence of an external source of ionizing photons, and argue that these profiles cannot be used to derive model-independent distances to the CHVCs. These results argue strongly that the CHVCs are not cosmological objects, and are instead associated with the Galactic halo.Comment: 30 pages, 14 figures; to appear in The Astrophysical Journa

    Gaussian decomposition of HI surveys. IV. Galactic intermediate- and high-velocity clouds

    Full text link
    Traditionally IVC and HVC were defined to be concentrations of HI gas, with line-of-sight velocities that are inconsistent with data on the differential rotation of the Galaxy. We demonstrate that IVCs and HVCs can be identified from certain density enhancements in (V_C, FWHM) distribution of Gaussians, representing the Galactic HI 21 cm radio lines. We study the Gaussians, which parameters fall into the regions of the phase-space density enhancements about $(V_C, FWHM) = (-131, 27), (164, 26) and (-49 km/s, 23 km/s). The sky distribution of the Gaussians, corresponding to the first two concentrations, very well represents the sky distribution of HVCs, as obtained on the basis of the traditional definition of these objects. The Gaussians of the last concentration correspond to IVCs. Based on this identification, the division line between IVCs and HVCs can be drawn at about |V_C| = 74 km/s, and IVCs can be identified down to velocities of about |V_C| = 24 km/s. Traces of both IVCs and HVCs can also be seen in the sky distribution of Gaussians with FWHM = 7.3 km/s. In HVCs, these cold cores have small angular dimensions and low observed brightness temperatures T_b. In IVCs, the cores are both larger and brighter. This definition of IVCs and HVCs is less dependant than the traditional one, on the differential rotation model of the Galaxy. The consideration of line-width information may enable IVCs and HVCs to be better distinguished from each other, and from the ordinary Galactic HIComment: 9 pages, 7 figures. Accepted for publication in A&A. High-resolution version available at http://www.aai.ee/~urmas/ast/HVCc.pdf (12.4 MBaits

    A High Galactic Latitude HI 21cm-line Absorption Survey using the GMRT: I. Observations and Spectra

    Get PDF
    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| >15deg.) Galactic latitudes. The Declination coverage of the present survey is Decl. ~ -45deg.. With a mean rms optical depth of ~0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.Comment: 46 pages, Accepted for publication in Journal of Astrophysics & Astronom
    corecore