38 research outputs found

    Regional differences in phosphorus budgets in intensive soybean agriculture

    Get PDF
    Author Posting. © American Institute of Biological Sciences, 2013. This article is posted here by permission of University of California Press for personal use, not for redistribution. The definitive version was published in BioScience 63 (2013): 49-54, doi:10.1525/bio.2013.63.1.10.Fertilizer-intensive agriculture has been integral to increasing food production over the past half century but has been accompanied by environmental costs. We use case studies of phosphorus fertilizer use in the world’s most productive soybean-growing regions, Iowa (United States), Mato Grosso (Brazil), and Buenos Aires (Argentina), to examine influences of management and soil type on agriculture’s most prevalent phosphorusrelated environmental consequences: eutrophication and consumption of Earth’s finite phosphorus reserves. With increasing phosphorus inputs, achieving high yields on tropical soils with high phosphorus-binding capacity is becoming more common. This system has low eutrophication risks but increases demands on phosphorus supplies. In contrast, production in traditional breadbaskets, on soils with lower phosphorus-binding capacities, is being sustained with decreasing phosphorus inputs. However, in these regions, historical overuse of phosphorus may mean continued eutrophication risk even as pressures on phosphorus reserves diminish. We focus here on soybean production but illustrate how achieving sustainable agriculture involves an intricate optimization of local, regional, and global considerations.SP is supported by the Andrew Mellon Foundation, and CN and SHR’s work in Mato Grosso was funded by National Science Foundation grant no. NSF-DEB-0640661 and through collaboration with the Instituto de Pesquisa Ambiental da Amazonia

    Transition Pathways to Sustainable Agricultural Water Management: A Review of Integrated Modeling Approaches

    Get PDF
    Agricultural water management (AWM) is an interdisciplinary concern, cutting across traditional domains such as agronomy, climatology, geology, economics, and sociology. Each of these disciplines has developed numerous process-based and empirical models for AWM. However, models that simulate all major hydrologic, water quality, and crop growth processes in agricultural systems are still lacking. As computers become more powerful, more researchers are choosing to integrate existing models to account for these major processes rather than building new cross-disciplinary models. Model integration carries the hope that, as in a real system, the sum of the model will be greater than the parts. However, models based upon simplified and unrealistic assumptions of physical or empirical processes can generate misleading results which are not useful for informing policy. In this article, we use literature and case studies from the High Plains Aquifer and Southeastern United States regions to elucidate the challenges and opportunities associated with integrated modeling for AWM and recommend conditions in which to use integrated models. Additionally, we examine the potential contributions of integrated modeling to AWM — the actual practice of conserving water while maximizing productivity

    Connecting urban food plans to the countryside: leveraging Denver's food vision to explore meaningful rural-urban linkages

    Get PDF
    Includes bibliographical references (pages 14-18).Cities are increasingly turning to food policy plans to support goals related to food access, food security, the environment, and economic development. This paper investigates ways that rural farmers, communities, and economies can both support and be supported by metropolitan food-focused initiatives. Specifically, our research question asked what opportunities and barriers exist to developing food policies that support urban food goals, particularly related to local procurement, as well as rural economic development. To address this question, we described and analyzed a meeting of urban stakeholders and larger-scale rural producers related to Colorado’s Denver Food Vision and Plan. We documented and explored “findings” gleaned from a supply chain diagraming and data compilation process that were then used to inform an event that brought together diverse supply chain partners. Three findings stand out. First, facilitating dialog between urban food policymakers and rural producers to understand potential tensions, mitigate such tensions, and capitalize on opportunities is essential. Second, perceptions and expectations surrounding “good food” are nuanced—a timely finding given the number of preferred procurement programs emerging across the county. Third, critical evaluation is needed across a diverse set of value chain strategies (e.g., conventional and alternative distribution) if food policy intends to support heterogeneous producers, their communities, and urban food policy goals

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    Nitrogen Cycling In Agroecosystems: The Effects Of Soil Fertility And Plant Species Interactions On Legume Nitrogen Fixation

    Full text link
    Legume-based cropping systems have the potential to improve nitrogen (N) retention and use efficiency in comparison with fertilizer-based systems, yet we lack an ecological understanding of biological nitrogen fixation (BNF) in these agroecosystems. My research objectives were to investigate: 1) the effects of legumebased management on soil organic matter (SOM) pools; 2) the effects of a SOM-based fertility gradient on BNF; and 3) how plant phenology and species interactions affect BNF across the fertility gradient. Research plots were established on grain farm fields in New York in 2004 and 2006. Fields represented a fertility gradient due to soil type and management differences, ranging from exclusive use of Haber-Bosch N to almost exclusive use of legumes. I estimated BNF of soybean (Glycine max), field pea (Pisum sativum), and perennial red clover (Trifolium pratense) using the 15N natural abundance method. Soil N pools were quantified ranging in microbial accessibility from extremely labile to primarily recalcitrant pools. Legume-based systems had greater quantity and quality of labile SOM pools, compared to fertilizer-based systems. I found weak evidence of soil N availability inhibiting BNF despite a more than 2-fold range in SOM pools across study sites. This suggests that N mineralization from SOM pools represented a much smaller N flux than N fertilizer levels used in past BNF studies. Complementary, facilitative and competitive interactions influenced BNF in species mixtures. Relay cropping of frost-seeded clover into winter grains increased clover % N from fixation due to the short period of competitive species interactions while retaining high biomass production due to the period of monoculture growth following grain harvest. The longer growth period of perennials may have increased their ability to respond to environmental conditions through feedback mechanisms. Perennial mixtures outyielded their corresponding monocultures and I found evidence for facilitative N transfer from legumes to grasses in perennial, but not annual mixtures. Monoculture red clover biomass yield was more stable across field sites than the other plant treatments. These results suggest that the integration of perennials and species mixtures into rotations could increase BNF inputs while also improving overall agroecosystem N cycling efficiency and yield stability

    Overcoming agricultural sustainability challenges in water-limited environments through soil health and water conservation: insights from the Ogallala Aquifer Region, USA

    No full text
    A rapid decline in water availability for crop production has driven substantial changes in cropping systems in the arid and semi-arid regions, including transitions from irrigated to dryland cropping. Management decisions play a critical role in the sustainability of agricultural systems facing transitions. Specifically, adopting practices that increase crop water use efficiency, improve soil health, and conserve water in the soil profile could improve agricultural sustainability. This review discusses published literature on the challenges associated with crop production and highlights management strategies to sustain soil health, enhance agricultural production, and farm profitability in the Ogallala Aquifer region to elucidate pathways to agricultural sustainability in water-limited environments around the world. We searched for published papers discussing soil health and water conservation practices, including conservation tillage, crop residue management, crop diversification, cover cropping, and livestock integration in cropping systems. These studies demonstrate adopting conservation systems can increase soil organic carbon (SOC) storage, water infiltration, soil microbial activities, water use efficiency, and decrease N fertilizer inputs compared to conventional systems. Integrating more than one soil and water conservation practice can complement to enhance soil health and sustainability of dryland or limited-irrigation agriculture in the Ogallala Aquifer region and similar agroecosystems across the world
    corecore