4,427 research outputs found
Magma Ascent along a Major Terrane Boundary: Crustal Contamination and Magma Mixing at the Drumadoon Intrusive Complex, Isle of Arran, Scotland
The composite intrusions of Drumadoon and An Cumhann crop out on the SE coast of the Isle of Arran, Scotland and form part of the larger British and Irish Palaeogene Igneous Province, a subset of the North Atlantic Igneous Province. The intrusions (shallow-level dykes and sills) comprise a central quartz-feldspar-phyric rhyolite flanked by xenocryst-bearing basaltic andesite, with an intermediate zone of dark quartz-feldspar-phyric dacite. New geochemical data provide information on the evolution of the component magmas and their relationships with each other, as well as their interaction with the crust through which they travelled. During shallow-crustal emplacement, the end-member magmas mixed. Isotopic evidence shows that both magmas were contaminated by the crust prior to mixing; the basaltic andesite magma preserves some evidence of contamination within the lower crust, whereas the rhyolite mainly records upper-crustal contamination. The Highland Boundary Fault divides Arran into two distinct terranes, the Neoproterozoic to Early Palaeozoic Grampian Terrane to the north and the Palaeozoic Midland Valley Terrane to the south. The Drumadoon Complex lies within the Midland Valley Terrane but its isotopic signatures indicate almost exclusive involvement of Grampian Terrane crust. Therefore, although the magmas originated at depth on the northern side of the Highland Boundary Fault, they have crossed this boundary during their evolution, probably just prior to emplacemen
A Mixed Phase of SUSY Gauge Theories from a-Maximization
We study N=1 supersymmetric SU(N) gauge theories with an antisymmetric tensor
and F flavors using the recent proposal of a-maximization by Intriligator and
Wecht. This theory had previously been studied using the method of
"deconfinement", but such an analysis was not conclusive since anomalous
dimensions in the non-perturbative regime could not be calculated. Using
a-maximization we show that for a large range of F the theory is at an
interacting superconformal fixed point. However, we also find evidence that for
a range of F the theory in the IR splits into a free "magnetic" gauge sector
and an interacting superconformal sector.Comment: 18 pages, 3 figure
Structure and Stability of Si(114)-(2x1)
We describe a recently discovered stable planar surface of silicon, Si(114).
This high-index surface, oriented 19.5 degrees away from (001) toward (111),
undergoes a 2x1 reconstruction. We propose a complete model for the
reconstructed surface based on scanning tunneling microscopy images and
first-principles total-energy calculations. The structure and stability of
Si(114)-(2x1) arises from a balance between surface dangling bond reduction and
surface stress relief, and provides a key to understanding the morphology of a
family of surfaces oriented between (001) and (114).Comment: REVTeX, 4 pages + 3 figures. A preprint with high-resolution figures
is available at http://cst-www.nrl.navy.mil/papers/si114.ps . To be published
in Phys. Rev. Let
Renormalization in General Gauge Mediation
We revisit General Gauge Mediation (GGM) in light of the supersymmetric
(linear) sigma model by utilizing the current superfield. The current
superfield in the GGM is identified with supersymmetric extension of the vector
symmetry current of the sigma model while spontaneous breakdown of
supersymmetry in the GGM corresponds to soft breakdown of the axial vector
symmetry of the sigma model. We first derive the current superfield from the
supersymmetric linear sigma model and then compute 2-point functions of the
current superfield using the (anti-)commutation relations of the messenger
component fields. After the global symmetry are weakly gauged, the 2-point
functions of the current superfield are identified with a part of the 2-point
functions of the associated vector superfield. We renormalize them by
dimensional regularization and show that physical gaugino and sfermion masses
of the MSSM are expressed in terms of the wavefunction renormalization
constants of the component fields of the vector superfield.Comment: 25 pages, 12 figure
Surface energy and stability of stress-driven discommensurate surface structures
A method is presented to obtain {\it ab initio} upper and lower bounds to
surface energies of stress-driven discommensurate surface structures, possibly
non-periodic or exhibiting very large unit cells. The instability of the
stressed, commensurate parent of the discommensurate structure sets an upper
bound to its surface energy; a lower bound is defined by the surface energy of
an ideally commensurate but laterally strained hypothetical surface system. The
surface energies of the phases of the Si(111):Ga and Ge(111):Ga systems and the
energies of the discommensurations are determined within eV.Comment: 4 pages RevTeX. 2 Figures not included. Ask for a hard copy (through
regular mail) to [email protected]
New Constraints from PAMELA anti-proton data on Annihilating and Decaying Dark Matter
Recently the PAMELA experiment has released its updated anti-proton flux and
anti-proton to proton flux ratio data up to energies of ~200GeV. With no clear
excess of cosmic ray anti-protons at high energies, one can extend constraints
on the production of anti-protons from dark matter. In this letter, we consider
both the cases of dark matter annihilating and decaying into standard model
particles that produce significant numbers of anti-protons. We provide two sets
of constraints on the annihilation cross-sections/decay lifetimes. In the one
set of constraints we ignore any source of anti-protons other than dark matter,
which give the highest allowed cross-sections/inverse lifetimes. In the other
set we include also anti-protons produced in collisions of cosmic rays with
interstellar medium nuclei, getting tighter but more realistic constraints on
the annihilation cross-sections/decay lifetimes.Comment: 7 pages, 3 figures, 3 table
- …
