81 research outputs found
Synthesis, structure and magnetic properties of Ti doped La2MnNiO6 double perovskite
Received: 20.08.2019. Accepted: 11.09.2019. Published: 15.10.2019.We report sol-gel synthesis, structural characterization and magnetic properties of La2Mn1–xTixNiO6 (0 ≤ x ≤ 1.0). Ti doping removed the biphasic structure of La2MnNiO6 by suppression of rhombohedral structure and all the Ti containing samples crystallized in monoclinic P21 / n symmetry. La2MnNiO6 exhibits multiple magnetic transitions. The high temperature ferromagnetic transition of La2MnNiO6 gradually shifted to lower temperatures with increase in Ti doping. La2TiNiO6 (x = 1.0) does not show any long-range magnetic ordering. The suppression of magnetic transition by Ti doping is ascribed to the destruction of Mn4+ – O – Ni2+ superexchange interaction. However, the signature of ferromagnetic phase persists up to 70 % Ti doping, indicating the robustness of magnetic ordering in La2MnNiO6. These results suggest that the addition of Ti4+ truncates the ferromagnetic Mn4+ – O – Ni2+ superexchange path and it likely promotes ferromagnetic cluster formation. The robustness of ferromagnetic state towards Ti substitution compared to the simple perovskite or spinel structure can be attributed to cationic ordering in double perovskite structure. Both the pure and Ti-doped samples exhibit magnetic frustration at lower temperatures due to partial cationic disordering. The absence of long-range ordering in La2TiNiO6, unlike La2TiCoO6 or Pr2TiCoO6, could be related to cationic disordering.The authors acknowledge the financial support from Indo-Russian project (INT / RUS / RFBR / P-239), Department of Science and Technology (DST), Government of India
Brillouin Scattering Studies of La_{0.77}Ca_{0.23}MnO_3 Across Metal-Insulator Transition
Temperature-dependent Brillouin scattering studies have been carried out on
La_{0.77}Ca_{0.23}MnO_3 across the paramagnetic insulator - ferromagnetic metal
(I-M) transition. The spectra show a surface Rayleigh wave (SRW) and a high
velocity pseudo surface acoustic wave (HVPSAW) besides bulk acoustic waves
(BAW). The Brillouin shifts associated with SRW and HVPSAW show blue-shifts,
where as the frequencies of the BAW decrease below the I-M transition
temperature (T_C) of 230 K. These results can be understood based on the
temperature dependence of the elastic constants. We also observe a central peak
whose width is maximum at T_C.Comment: 7 pages, 8 figure
Incoherent Effect of Fe and Ni Substitutions in the Ferromagnetic-Insulator La0.6Bi0.4MnO3+d
A comparative study of the effect of Fe and Ni doping on the bismuth based
perovskite La0.6Bi0.4MnO3.1, a projected spintronics magnetic semiconductor has
been carried out. The doped systems show an expressive change in magnetic
ordering temperature. However, the shifts in ferromagnetic transition (TC) of
these doped phases are in opposite direction with respect to the parent phase
TC of 115 K. The Ni-doped phase shows an increase in TC ~200 K, whereas the
Fe-doped phase exhibits a downward shift to TC~95 K. Moreover, the Fe-doped is
hard-type whereas the Ni-doped compound is soft-type ferromagnet. It is
observed that the materials are semiconducting in the ferromagnetic phase with
activation energies of 77 & 82 meV for Fe & Ni-doped phases respectively. In
the presence of external magnetic field of 7 Tesla, they exhibit minor changes
in the resistivity behaviours and the maximum isothermal magnetoresistance is
around -20 % at 125 K for the Ni-phase. The results are explained on the basis
of electronic phase separation and competing ferromagnetic and
antiferromagnetic interactions between the various mixed valence cations.Comment: 18 pages including figure
Effect of substrate roughness on growth of diamond by hot filament CVD
Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 μm to 0.91 μm (Centre Line Average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp 3 to non-sp 3 content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640°C without any additional substrate heating. The coatings grown at adverse conditions for sp 3 deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp 3 condition gives clear faceted grains
Brillouin scattering studies in FeO across the Verwey transition
Brillouin scattering studies have been carried out on high quality single
crystals of FeO with [100] and [110] faces in the temperature range of
300 to 30 K. The room temperature spectrum shows a surface Rayleigh wave (SRW)
mode at 8 GHz and a longitudinal acoustic (LA) mode at 60 GHz. The SRW mode
frequency shows a minimum at the Verwey transition temperature of 123 K.
The softening of the SRW mode frequency from about 250 K to can be
quantitatively understood as a result of a decrease in the shear elastic
constant C, arising from the coupling of shear strain to charge
fluctuations. On the other hand, the LA mode frequency does not show any
significant change around , but shows a large change in its intensity. The
latter shows a maximum at around 120 K in the cooling run and at 165 K in the
heating run, exhibiting a large hysteresis of 45 K. This significant change in
intensity may be related to the presence of stress-induced ordering of
Fe and Fe at the octahedral sites, as well as to stress-induced
domain wall motion.Comment: 14 pages, 3 figures, accepted in Physical Review B 200
- …