15 research outputs found

    A Bayesian generalised extreme value model to estimate real-time pedestrian crash risks at signalised intersections using artificial intelligence-based video analytics

    No full text
    Pedestrians represent a vulnerable road user group at signalised intersections. As such, properly estimating pedestrian crash risk at discrete short intervals is important for real-time safety management. This study proposes a novel real-time vehicle-pedestrian crash risk modelling framework for signalised intersections. At the core of this framework, a Bayesian Generalised Extreme Value modelling approach is employed to estimate crash risk in real-time from traffic conflicts captured by post encroachment time. A Block Maxima sampling approach, corresponding to a Generalised Extreme Value distribution, is used to identify pedestrian conflicts at the traffic signal cycle level. Several signal-level covariates are used to capture the time-varying heterogeneity of traffic extremes, and the crash risk of different signal cycles is also addressed within the Bayesian framework. The proposed framework is operationalised using a total of 144 hours of traffic movement video data from three signalised intersections in Queensland, Australia. To obtain signal cycle-level covariates, an automated covariate extraction algorithm is used that fuses three data sources (trajectory database from the video feed, traffic conflict database, and signal timing database) to obtain various covariates to explain time-varying crash risk across different cycles. Results show that the model provides a reasonable estimate of historical crash records at the study sites. Utilising the fitted generalised extreme value distribution, the proposed model provides real-time crash estimates at a signal cycle level and can differentiate between safe and risky signal cycles. The real-time crash risk model also helps understand the differential crash risk of pedestrians at a signalised intersection across different periods of the day. The findings of this study demonstrate the potential for the proposed real-time framework in estimating the vehicle-pedestrian crash risk at the signal cycle level, allowing proactive safety management and the development of real-time risk mitigation strategies for pedestrians

    Crash severity along rural mountainous highways in Malaysia: An application of a combined decision tree and logistic regression model

    No full text
    <p><b>Objective:</b> Traffic crashes along mountainous highways may lead to injuries and fatalities more often than along highways on plain topography; however, research focusing on the injury outcome of such crashes is relatively scant. The objective of this study was to investigate the factors affecting the likelihood that traffic crashes along rural mountainous highways result in injuries.</p> <p><b>Method:</b> This study proposes a combination of decision tree and logistic regression techniques to model crash severity (injury vs. noninjury), because the combined approach allows the specification of nonlinearities and interactions in addition to main effects. Both a scobit model and a random parameters logit model, respectively accounting for an imbalance response variable and unobserved heterogeneities, are tested and compared. The study data set contains a total of 5 years of crash data (2008–2012) on selected mountainous highways in Malaysia. To enrich the data quality, an extensive field survey was conducted to collect detailed information on horizontal alignment, longitudinal grades, cross-section elements, and roadside features. In addition, weather condition data from the meteorology department were merged using the time stamp and proximity measures in AutoCAD-Geolocation.</p> <p><b>Results:</b> The random parameters logit model is found to outperform both the standard logit and scobit models, suggesting the importance of accounting for unobserved heterogeneity in crash severity models. Results suggest that proportion of segment lengths with simple curves, presence of horizontal curves along steep gradients, highway segments with unsealed shoulders, and highway segments with cliffs along both sides are positively associated with injury-producing crashes along rural mountainous highways. Interestingly, crashes during rainy conditions are associated with crashes that are less likely to involve injury. It is also found that the likelihood of injury-producing crashes decreases for rear-end collisions but increases for head-on collisions and crashes involving heavy vehicles. A higher order interaction suggests that single-vehicle crashes involving light and medium-sized vehicles are less severe along straight sections compared to road sections with horizontal curves. One the other hand, crash severity is higher when heavy vehicles are involved in crashes as single vehicles traveling along straight segments of rural mountainous highways.</p> <p><b>Conclusion:</b> In addition to unobserved heterogeneity, it is important to account for higher order interactions to have a better understanding of factors that influence crash severity. A proper understanding of these factors will help develop targeted countermeasures to improve road safety along rural mountainous highways.</p

    Real-time crash risk forecasting using Artificial-Intelligence based video analytics: A unified framework of generalised extreme value theory and autoregressive integrated moving average model

    No full text
    With the recent advancements in computer vision and artificial intelligence, traffic conflicts occurring at an intersection and associated traffic characteristics can be obtained at the granular level of a signal cycle in real-time. This capability enables the estimation of the real-time crash risk using sophisticated modelling techniques, e.g., extreme value theory. However, these models are inherently incapable of forecasting the crash risk of future time periods based on the temporal dependency of crash risks. This study proposes a unified framework of extreme value theory and autoregressive integrated moving average models for forecasting crash risks at signalised intersections. At the first level of this framework, a non-stationary generalised extreme value model has been developed to estimate the real-time rear-end crash risk at the signal cycle level using the video data collected from three signalised intersections in Queensland, Australia. To capture the time-varying effect of different traffic conditions on conflict extremes, traffic flow, speed, shockwave area, and platoon ratio covariates are incorporated into the generalised extreme value model. The signal cycle-level crash risks obtained from the first level form a univariate time series, which is modelled using two variants of autoregressive integrated moving average model to forecast the crash risk of future signal cycles. Results reveal that the autoregressive integrated moving average model with exogenous variables outperforms the model without exogenous variables and can forecast the crash risk for the next 30–35 min with reasonable accuracy. Similarly, results also demonstrate that different crash risk patterns within a typical day are accurately predicted. The proposed framework helps identify the spatiotemporal windows where safety gradually deteriorates over time, thus enabling proactive safety assessment.</p

    Logistic regression analysis: Predicting handheld conversations and texting/browsing engagement.

    No full text
    <p>Logistic regression analysis: Predicting handheld conversations and texting/browsing engagement.</p

    Self-reported attitudes and task-management strategies for mobile phone distracted driving.

    No full text
    <p>Self-reported attitudes and task-management strategies for mobile phone distracted driving.</p

    The simulated marginal utility of one-way cost for 100 randomly selected individuals.

    No full text
    <p>The simulated marginal utility of one-way cost for 100 randomly selected individuals.</p

    User satisfaction with train fares: A comparative analysis in five Australian cities

    No full text
    <div><p>In the public transport industry, travellers’ perceived satisfaction is a key element in understanding their evaluation of, and loyalty to ridership. Despite its notable importance, studies of customer satisfaction are under-represented in the literature, and most previous studies are based on survey data collected from a single city only. This does not allow a comparison across different transport systems. To address this underrepresentation, this paper reports on a study of train passengers’ satisfaction with the fare paid for their most recent home-based train trip in five Australian capital cities: Sydney, Melbourne, Brisbane, Adelaide, and Perth. Two data sources are used: a nation-wide survey, and objective information on the train fare structure in each of the targeted cities. In particular, satisfaction with train fares is modelled as a function of socio-economic factors and train trip characteristics, using a random parameters ordered Logit model that accounts for unobserved heterogeneity in the population. Results indicate that gender, city of origin, transport mode from home to the train station, eligibility for either student or senior concession fare, one-way cost, and waiting time as well as five diverse interaction variables between city of origin and socio-economic factors are the key determinants of passenger satisfaction with train fares. In particular, this study reveals that female respondents tend to be less satisfied with their train fare than their male counterparts. Interestingly, respondents who take the bus to the train station tend to feel more satisfied with their fare compared with the rest of the respondents. In addition, notable heterogeneity is detected across respondents’ perceived satisfaction with train fare, specifically with regard to the one-way cost and the waiting time incurred. An intercity comparison reveals that a city’s train fare structure also affects a traveller’s perceived satisfaction with their train fare. The findings of this research are significant for both policy makers and transport operators, allowing them to understand traveller behaviours, and to subsequently formulate effective transit policies.</p></div

    The simulated marginal utility of waiting time for 100 randomly selected individuals.

    No full text
    <p>The simulated marginal utility of waiting time for 100 randomly selected individuals.</p
    corecore