10 research outputs found

    Microwave Breast Phantom Measurement System with Compact Side Slotted Directional Antenna

    Get PDF
    In this paper, a new, complete, and comprehensive breast phantom measurement system is presented. A side slotted vivaldi antenna is used for breast phantom measurement. The radiating fins are modified by etching six side slots to enhance the electrical length and produce stronger directive radiation with higher gain. This approach reduces the lower operating frequency and increases the gain and efficiency without compromising the size of the antenna. The overall size of the antenna is 8.8 (L) × 7.5 (W) cm 2 or approximately 0.4λ × 0.5λ at the first resonant frequency of 1.79 GHz. The results show that the antenna has a fractional bandwidth of approximately 127% from 1.54 to 7 GHz for return loss less than 10 dB with a directional radiation pattern. The average gain of the proposed prototype is 8.5 dBi, and the radiation efficiency is approximately 92% on average over the operating bandwidth. The fidelity factor for face to face is 0.98, and that for side by side is 0.4479, which proves the directionality and lower distortion of the signal. The prototype is successfully simulated, fabricated, and analyzed. The radiating fins of the proposed prototype are optimized to achieve the desired properties for breast phantom measurement. The antenna is used as the transceiver in a breast phantom measurement system to detect unwanted tumor cells inside the breast. An automated electromechanical imaging system with the necessary data post processing makes it an easy and suitable tool for microwave imaging to detect breast tumors

    Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review

    Get PDF
    Globally, breast cancer is reported as a primary cause of death in women. More than 1.8 million new breast cancer cases are diagnosed every year. Because of the current limitations on clinical imaging, researchers are motivated to investigate complementary tools and alternatives to available techniques for detecting breast cancer in earlier stages. This article presents a review of concepts and electromagnetic techniques for microwave breast imaging. More specifically, this work reviews ultra-wideband (UWB) antenna sensors and their current applications in medical imaging, leading to breast imaging. We review the use of UWB sensor based microwave energy in various imaging applications for breast tumor related diseases, tumor detection, and breast tumor detection. In microwave imaging, the back-scattered signals radiating by sensors from a human body are analyzed for changes in the electrical properties of tissues. Tumorous cells exhibit higher dielectric constants because of their high water content. The goal of this article is to provide microwave researchers with in-depth information on electromagnetic techniques for microwave imaging sensors and describe recent developments in these techniques

    Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review

    No full text
    Globally, breast cancer is reported as a primary cause of death in women. More than 1.8 million new breast cancer cases are diagnosed every year. Because of the current limitations on clinical imaging, researchers are motivated to investigate complementary tools and alternatives to available techniques for detecting breast cancer in earlier stages. This article presents a review of concepts and electromagnetic techniques for microwave breast imaging. More specifically, this work reviews ultra-wideband (UWB) antenna sensors and their current applications in medical imaging, leading to breast imaging. We review the use of UWB sensor based microwave energy in various imaging applications for breast tumor related diseases, tumor detection, and breast tumor detection. In microwave imaging, the back-scattered signals radiating by sensors from a human body are analyzed for changes in the electrical properties of tissues. Tumorous cells exhibit higher dielectric constants because of their high water content. The goal of this article is to provide microwave researchers with in-depth information on electromagnetic techniques for microwave imaging sensors and describe recent developments in these techniques

    A Parasitic Resonator-Based Diamond-Shaped Microstrip Antenna for Microwave Imaging Applications

    No full text
    This study proposes a new parasitic resonator-based diamond-shaped microstrip patch antenna for ultra-wideband microwave imaging applications. The antenna consists of a diamond-shaped radiating patch, partial ground plane, and four-star shape parasitic elements. The use of parasitic elements improves the antenna performance in terms of the bandwidth and gain. The proposed prototype has a compact dimension of 30 × 25 × 1.6 mm3. The antenna achieves an overall bandwidth (S11<-10dB) of 7.6 GHz (2.7–10.3 GHz) with more than 4 dBi realized gain and 80% efficiency across the radiating bandwidth. The modified structures of the design extended the usable upper frequency from 9.7 GHz to 10.3 GHz, and the lower frequency is decreased from 3.4 GHz to 2.7 GHz with maintaining the omnidirectional radiation pattern. The design and simulation of the antenna are performed in the 3D electromagnetic simulator CST Microwave Studio. The proposed antenna is used for breast phantom measurement system to analyze the variation of backscattering signal and transmit-received pulses. The observation during the analysis of the numerical and measured data reveals that the designed antenna is a suitable candidate for ultra-wideband (UWB)-based microwave imaging applications

    A Negative Index Metamaterial to Enhance the Performance of Miniaturized UWB Antenna for Microwave Imaging Applications

    No full text
    A new, compact planar wideband negative index metamaterial based on a modified split ring resonator (SRR) is studied to enhance performance of ultrawideband antenna. A compact, metamaterial (MTM)-inspired microstrip antenna is presented for microwave imaging system (MIS) application. Two layers of left-handed metamaterial array (2 × 4) of the unit cell are placed on the radiating patch and the ground plane, respectively. Each left-handed metamaterial (LHM) unit cell was constructed by modifying a square split ring resonator (SRR), resulting in negative permeability and permittivity with a stable negative refractive index. The results shows that it has a significant impact on the performance of conventional patch antenna in terms of transmission co-efficient, efficiency and low loss. Compared to antenna without LHM, it is shown that the bandwidth is significantly broadened up to a few megahertz and becomes more convergent leading to the achievement of desired properties for ultra-wideband (UWB) applications leading to microwave imaging. The proposed MTM antenna structure is fabricated on commercially-available, flame-retardant material of size 26 × 22 × 1.6 mm3 with 4.6 dielectric constants, due to its low cost and convenience for making multilayer printed circuit boards (PCBs). The antenna achieves 3.1 GHz to 10.71 GHz of impedance bandwidth (−10 dB), which covers the full UWB band. The use of double-layer negative index MTM unit cells enhances UWB performance, and the improved radiation efficiency, nearly directional radiation pattern, acceptable gain, stable surface current and negative refractive index make this MTM antenna a suitable candidate for UWB applications

    Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review

    No full text
    Globally, breast cancer is reported as a primary cause of death in women. More than 1.8 million new breast cancer cases are diagnosed every year. Because of the current limitations on clinical imaging, researchers are motivated to investigate complementary tools and alternatives to available techniques for detecting breast cancer in earlier stages. This article presents a review of concepts and electromagnetic techniques for microwave breast imaging. More specifically, this work reviews ultra-wideband (UWB) antenna sensors and their current applications in medical imaging, leading to breast imaging. We review the use of UWB sensor based microwave energy in various imaging applications for breast tumor related diseases, tumor detection, and breast tumor detection. In microwave imaging, the back-scattered signals radiating by sensors from a human body are analyzed for changes in the electrical properties of tissues. Tumorous cells exhibit higher dielectric constants because of their high water content. The goal of this article is to provide microwave researchers with in-depth information on electromagnetic techniques for microwave imaging sensors and describe recent developments in these techniques
    corecore