3 research outputs found

    A multicentre, double-blind, placebo-controlled randomized trial of Mycobacterium w in critically ill patients with COVID-19 (ARMY-2)

    No full text
    Background: Mycobacterium w (Mw), an immunomodulator, resulted in better clinical status in severe coronavirus infectious disease 19 (COVID-19) but no survival benefit in a previous study. Herein, we investigate whether Mw could improve clinical outcomes and survival in COVID-19. Materials and Methods: In a multicentric, randomized, double-blind, parallel-group, placebo-controlled trial, we randomized hospitalized subjects with severe COVID-19 to receive either 0.3 mL/day of Mw intradermally or a matching placebo for three consecutive days. The primary outcome was 28-day mortality. The co-primary outcome was the distribution of clinical status assessed on a seven-point ordinal scale ranging from discharged (category 1) to death (category 7) on study days 14, 21, and 28. The key secondary outcomes were the change in sequential organ failure assessment (SOFA) score on days 7 and 14 compared to the baseline, treatment-emergent adverse events, and others. Results: We included 273 subjects (136 Mw, 137 placebo). The use of Mw did not improve 28-day survival (Mw vs. placebo, 18 [13.2%] vs. 12 [8.8%], P = 0.259) or the clinical status on days 14 (odds ratio [OR], 1.33; 95% confidence intervals [CI], 0.79-2.3), 21 (OR, 1.49; 95% CI, 0.83-2.7) or 28 (OR, 1.49; 95% CI, 0.79-2.8) between the two study arms. There was no difference in the delta SOFA score or other secondary outcomes between the two groups. We observed higher injection site reactions with Mw. Conclusion: Mw did not reduce 28-day mortality or improve clinical status on days 14, 21 and 28 compared to placebo in patients with severe COVID-19. [Trial identifier: CTRI/2020/04/024846

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore