622 research outputs found

    Local expression of expansin induces the entire process of leaf development and modifies leaf shape

    Get PDF
    Expansins are a family of extracellular proteins proposed to play a key role in wall stress relaxation and, thus, in cell and tissue growth. To test the possible function of expansins in morphogenesis, we have developed a technique that allows transient local microinduction of gene expression in transgenic plants. We have used this system to manipulate expansin gene expression in various tissues. Our results indicate that local expansin expression within the meristem induces a developmental program that recapitulates the entire process of leaf formation. Moreover, local transient induction of expansin expression on the flank of developing primordia leads to the induction of ectopic lamina tissue and thus modulation of leaf shape. These data describe an approach for the local manipulation of gene expression and indicate a role for expansin in the control of both leaf initiation and shape. These results are consistent with the action of cell division-independent mechanisms in plant morphogenesis

    Differential expression of α- and β-expansin genes in the elongating leaf of Festuca pratensis

    Get PDF
    Grasses contain a number of genes encoding both α- and β-expansins. These cell wall proteins are predicted to play a role in cell wall modifications, particularly during tissue elongation. We report here on the characterisation of five α- and three vegetative β-expansins expressed in the leaf elongation zone (LEZ) of the forage grass, Festuca pratensis Huds. The expression of the predominant α-expansin (FpExp2) was localised to the vascular tissue, as was the β-expansin FpExpB3. Expression of another β-expansin (FpExpB2) was not localised to vascular tissue but was highly expressed in roots and initiating tillers. This is the first description of vegetative β-expansin gene expression at the organ and tissue level and also the first evidence of differential expression between members of this gene family. In addition, an analysis of both α- and β-expansin expression along the LEZ revealed no correlation with growth rate distribution, whereas we were able to identify a novel xyloglucan endotransglycosylase (FpXET1) whose expression profile closely mimicked leaf growth rate. These data suggest that α- and β-expansin activities in the grass leaf are associated with tissue differentiation, that expansins involved in leaf growth may represent more minor components of the spectrum of expansin genes expressed in this tissue, and that XETs may be useful markers for the analysis of grass leaf growth

    An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling

    Get PDF
    Abstract Background Aspergillus niger fermentation has provided the chief source of industrial citric acid for over 50 years. Traditional strain development of this organism was achieved through random mutagenesis, but advances in genomics have enabled the development of genome-scale metabolic modelling that can be used to make predictive improvements in fermentation performance. The parent citric acid-producing strain of A. niger, ATCC 1015, has been described previously by a genome-scale metabolic model that encapsulates its response to ambient pH. Here, we report the development of a novel double optimisation modelling approach that generates time-dependent citric acid fermentation using dynamic flux balance analysis. Results The output from this model shows a good match with empirical fermentation data. Our studies suggest that citric acid production commences upon a switch to phosphate-limited growth and this is validated by fitting to empirical data, which confirms the diauxic growth behaviour and the role of phosphate storage as polyphosphate. Conclusions The calibrated time-course model reflects observed metabolic events and generates reliable in silico data for industrially relevant fermentative time series, and for the behaviour of engineered strains suggesting that our approach can be used as a powerful tool for predictive metabolic engineering

    Evidence for Active Uptake and Deposition of Si-based defenses in Tall Fescue

    Get PDF
    Silicon (Si) is taken up from the soil as monosilicic acid by plant roots, transported to leaves and deposited as phytoliths, amorphous silica (SiO2) bodies, which are a key component of anti-herbivore defense in grasses. Silicon transporters have been identified in many plant species, but the mechanisms underpinning Si transport remain poorly understood. Specifically, the extent to which Si uptake is a passive process, driven primarily by transpiration, or has both passive and active components remains disputed. Increases in foliar Si concentration following herbivory suggest plants may exercise some control over Si uptake and distribution. In order to investigate passive and active controls on Si accumulation, we examined both genetic and environmental influences on Si accumulation in the forage grass Festuca arundinacea. We studied three F. arundinacea varieties that differ in the levels of Si they accumulate. Varieties not only differed in Si concentration, but also in increases in Si accumulation in response to leaf damage. The varietal differences in Si concentration generally reflected differences in stomatal density and stomatal conductance, suggesting passive, transpiration-mediated mechanisms underpin these differences. Bagging plants after damage was employed to minimize differences in stomatal conductance between varieties and in response to damage. This treatment eliminated constitutive differences in leaf Si levels, but did not impair the damage-induced increases in Si uptake: damaged, bagged plants still had more leaf Si than undamaged, bagged plants in all three varieties. Preliminary differential gene expression analysis revealed that the active Si transporter Lsi2 was highly expressed in damaged unbagged plants compared with undamaged unbagged plants, suggesting damage-induced Si defenses are regulated at gene level. Our findings suggest that although differences in transpiration may be partially responsible for varietal differences in Si uptake, they cannot explain damage-induced increases in Si uptake and deposition, suggesting that wounding causes changes in Si uptake, distribution and deposition that likely involve active processes and changes in gene expression. Introductio

    Robust microorganisms for biofuel and chemical production from municipal solid waste

    Get PDF
    BACKGROUND: Worldwide 3.4 billion tonnes of municipal solid waste (MSW) will be produced annually by 2050, however, current approaches to MSW management predominantly involve unsustainable practices like landfilling and incineration. The organic fraction of MSW (OMSW) typically comprises ~ 50% lignocellulose-rich material but is underexplored as a biomanufacturing feedstock due to its highly inconsistent and heterogeneous composition. This study sought to overcome the limitations associated with studying MSW-derived feedstocks by using OMSW produced from a realistic and reproducible MSW mixture on a commercial autoclave system. The resulting OMSW fibre was enzymatically hydrolysed and used to screen diverse microorganisms of biotechnological interest to identify robust species capable of fermenting this complex feedstock. RESULTS: The autoclave pre-treated OMSW fibre contained a polysaccharide fraction comprising 38% cellulose and 4% hemicellulose. Enzymatic hydrolysate of OMSW fibre was high in D-glucose (5.5% w/v) and D-xylose (1.8%w/v) but deficient in nitrogen and phosphate. Although relatively low levels of levulinic acid (30 mM) and vanillin (2 mM) were detected and furfural and 5-hydroxymethylfurfural were absent, the hydrolysate contained an abundance of potentially toxic metals (0.6% w/v). Hydrolysate supplemented with 1% yeast extract to alleviate nutrient limitation was used in a substrate-oriented shake-flask screen with eight biotechnologically useful microorganisms (Clostridium saccharoperbutylacetonicum, Escherichia coli, Geobacillus thermoglucosidasius, Pseudomonas putida, Rhodococcus opacus, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Zymomonas mobilis). Each species' growth and productivity were characterised and three species were identified that robustly and efficiently fermented OMSW fibre hydrolysate without significant substrate inhibition: Z. mobilis, S. cerevisiae and R. opacus, respectively produced product to 69%, 70% and 72% of the maximum theoretical fermentation yield and could theoretically produce 136 kg and 139 kg of ethanol and 91 kg of triacylglycerol (TAG) per tonne of OMSW. CONCLUSIONS: Developing an integrated biorefinery around MSW has the potential to significantly alleviate the environmental burden of current waste management practices. Substrate-oriented screening of a representative and reproducible OMSW-derived fibre identified microorganisms intrinsically suited to growth on OMSW hydrolysates. These species are promising candidates for developing an MSW biorefining platform and provide a foundation for future studies aiming to valorise this underexplored feedstock

    Nutrient availability shapes the microbial community structure in sugarcane bagasse compost- derived consortia

    Get PDF
    Microbial communities (MCs) create complex metabolic networks in natural habitats and respond to environmental changes by shifts in the community structure. Although members of MCs are often not amenable for cultivation in pure culture, it is possible to obtain a greater diversity of species in the laboratory setting when microorganisms are grown as mixed cultures. In order to mimic the environmental conditions, an appropriate growth medium must be applied. Here, we examined the hypothesis that a greater diversity of microorganisms can be sustained under nutrient-limited conditions. Using a 16 S rRNA amplicon metagenomic approach, we explored the structure of a compost-derived MC. During a five-week time course the MC grown in minimal medium with sugarcane bagasse (SCB) as a sole carbon source showed greater diversity and enrichment in lignocellulose-degrading microorganisms. In contrast, a MC grown in nutrient rich medium with addition of SCB had a lower microbial diversity and limited number of lignocellulolytic species. Our approach provides evidence that factors such as nutrient availability has a significant selective pressure on the biodiversity of microorganisms in MCs. Consequently, nutrient-limited medium may displace bacterial generalist species, leading to an enriched source for mining novel enzymes for biotechnology applications

    High-throughput Saccharification Assay for Lignocellulosic Materials

    Get PDF
    Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest 1. In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification 2. These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system
    • …
    corecore