5,114 research outputs found

    Higher-order splitting algorithms for solving the nonlinear Schr\"odinger equation and their instabilities

    Get PDF
    Since the kinetic and the potential energy term of the real time nonlinear Schr\"odinger equation can each be solved exactly, the entire equation can be solved to any order via splitting algorithms. We verified the fourth-order convergence of some well known algorithms by solving the Gross-Pitaevskii equation numerically. All such splitting algorithms suffer from a latent numerical instability even when the total energy is very well conserved. A detail error analysis reveals that the noise, or elementary excitations of the nonlinear Schr\"odinger, obeys the Bogoliubov spectrum and the instability is due to the exponential growth of high wave number noises caused by the splitting process. For a continuum wave function, this instability is unavoidable no matter how small the time step. For a discrete wave function, the instability can be avoided only for \dt k_{max}^2{<\atop\sim}2 \pi, where kmax=π/Δxk_{max}=\pi/\Delta x.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Pseudo-High-Order Symplectic Integrators

    Get PDF
    Symplectic N-body integrators are widely used to study problems in celestial mechanics. The most popular algorithms are of 2nd and 4th order, requiring 2 and 6 substeps per timestep, respectively. The number of substeps increases rapidly with order in timestep, rendering higher-order methods impractical. However, symplectic integrators are often applied to systems in which perturbations between bodies are a small factor of the force due to a dominant central mass. In this case, it is possible to create optimized symplectic algorithms that require fewer substeps per timestep. This is achieved by only considering error terms of order epsilon, and neglecting those of order epsilon^2, epsilon^3 etc. Here we devise symplectic algorithms with 4 and 6 substeps per step which effectively behave as 4th and 6th-order integrators when epsilon is small. These algorithms are more efficient than the usual 2nd and 4th-order methods when applied to planetary systems.Comment: 14 pages, 5 figures. Accepted for publication in the Astronomical Journa

    Symplectic integrators for index one constraints

    Full text link
    We show that symplectic Runge-Kutta methods provide effective symplectic integrators for Hamiltonian systems with index one constraints. These include the Hamiltonian description of variational problems subject to position and velocity constraints nondegenerate in the velocities, such as those arising in sub-Riemannian geometry and control theory.Comment: 13 pages, accepted in SIAM J Sci Compu

    Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping

    Full text link
    Explicit and semi-explicit geometric integration schemes for dissipative perturbations of Hamiltonian systems are analyzed. The dissipation is characterized by a small parameter ϵ\epsilon, and the schemes under study preserve the symplectic structure in the case ϵ=0\epsilon=0. In the case 0<ϵ≪10<\epsilon\ll 1 the energy dissipation rate is shown to be asymptotically correct by backward error analysis. Theoretical results on monotone decrease of the modified Hamiltonian function for small enough step sizes are given. Further, an analysis proving near conservation of relative equilibria for small enough step sizes is conducted. Numerical examples, verifying the analyses, are given for a planar pendulum and an elastic 3--D pendulum. The results are superior in comparison with a conventional explicit Runge-Kutta method of the same order

    Public Authorities as Defendants: Using Bayesian Networks to determine the Likelihood of Success for Negligence claims in the wake of Oakden

    Get PDF
    Several countries are currently investigating issues of neglect, poor quality care and abuse in the aged care sector. In most cases it is the State who license and monitor aged care providers, which frequently introduces a serious conflict of interest because the State also operate many of the facilities where our most vulnerable peoples are cared for. Where issues are raised with the standard of care being provided, the State are seen by many as a deep-pockets defendant and become the target of high-value lawsuits. This paper draws on cases and circumstances from one jurisdiction based on the English legal tradition, Australia, and proposes a Bayesian solution capable of determining probability for success for citizen plaintiffs who bring negligence claims against a public authority defendant. Use of a Bayesian network trained on case audit data shows that even when the plaintiff case meets all requirements for a successful negligence litigation, success is not often assured. Only in around one-fifth of these cases does the plaintiff succeed against a public authority as defendant

    Nonequilibrium Atom-Dielectric Forces Mediated by a Quantum Field

    Full text link
    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables - the medium, the quantum field and the atom's internal degrees of freedom, in that order - to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse- graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.Comment: 24 pages, 2 figure

    The Complete Characterization of Fourth-Order Symplectic Integrators with Extended-Linear Coefficients

    Get PDF
    The structure of symplectic integrators up to fourth-order can be completely and analytical understood when the factorization (split) coefficents are related linearly but with a uniform nonlinear proportional factor. The analytic form of these {\it extended-linear} symplectic integrators greatly simplified proofs of their general properties and allowed easy construction of both forward and non-forward fourth-order algorithms with arbitrary number of operators. Most fourth-order forward integrators can now be derived analytically from this extended-linear formulation without the use of symbolic algebra.Comment: 12 pages, 2 figures, submitted to Phys. Rev. E, corrected typo

    Enhanced dispersion interaction in confined geometry

    Full text link
    The dispersion interaction between two point-like particles confined in a dielectric slab between two plates of another dielectric medium is studied within a continuum (Lifshitz) theory. The retarded (Casimir-Polder) interaction at large inter-particle distances is found to be strongly enhanced as the mismatch between the dielectric permittivities of the two media is increased. The large-distance interaction is multiplied due to confinement by a factor of (33γ5/2+13γ−3/2)/46(33\gamma^{5/2}+13\gamma^{-3/2})/46 at zero temperature, and by (5γ2+γ−2)/6(5\gamma^2+\gamma^{-2})/6 at finite temperature, \gamma=\ein(0)/\eout(0) being the ratio between the static dielectric permittivities of the inner and outer media. This confinement-induced amplification of the dispersion interaction can reach several orders of magnitude.Comment: 4 page

    Achieving Brouwer's law with implicit Runge-Kutta methods

    Get PDF
    In high accuracy long-time integration of differential equations, round-off errors may dominate truncation errors. This article studies the influence of round-off on the conservation of first integrals such as the total energy in Hamiltonian systems. For implicit Runge-Kutta methods, a standard implementation shows an unexpected propagation. We propose a modification that reduces the effect of round-off and shows a qualitative and quantitative improvement for an accurate integration over long time
    • …
    corecore