20 research outputs found
Activity of Vesicular Stomatitis Virus M Protein Mutants in Cell Rounding Is Correlated with the Ability to Inhibit Host Gene Expression and Is Not Correlated with Virus Assembly Function
AbstractIn addition to its role in virus assembly, the matrix (M) protein of vesicular stomatitis virus (VSV) is involved in virus-induced cell rounding and inhibition of host-directed gene expression. Previous experiments have shown that two M protein mutants genetically dissociate the ability of M protein to inhibit host-directed gene expression from its function in virus assembly: M protein from tsO82 virus is fully functional in virus assembly but defective in the inhibition of host-directed gene expression, while the MN1 deletion mutant, which lacks amino acids 4β21, inhibits host-directed gene expression but cannot function in virus assembly. Experiments presented here compared cell rounding induced by these two mutant M proteins to that of wt M protein. BHK cells were transfected with M protein mRNA transcribedin vitro,and the extent of cell rounding was evaluated at 24 hr posttransfection. The MN1 protein was nearly as effective as wt M protein in the induction of cell rounding, while tsO82 M protein expressed from transfected RNA was not able to induce cell rounding above that observed in negative controls without M protein, although it did cause BHK cells to have a less elongated shape. These results indicate that the ability of MN1 and tsO82 M proteins to induce cell rounding is not correlated with their virus assembly function. Instead the cell rounding activity of these mutants is correlated with their ability to inhibit host-directed gene expression. Previous data suggesting that these two cytopathic activities could be dissociated can be readily accounted for by quantitative differences in M protein expression required. Infection of either BHK cells or L cells with tsO82 virus induced cell rounding, although cell rounding was delayed relative to that following infection with wt VSV, suggesting that tsO82 M protein retains some cytopathic activity. The distribution of actin, vimentin, and tubulin in transfected cells was determined by fluorescence microscopy. In cells transfected with tsO82 M mRNA, these cytoskeletal elements were indistinguishable from those of negative control transfected cells. In cells rounded as a result of transfection with wt M or MN1 mRNA, actin-containing filaments were reorganized into a thick perinuclear ring but were not depolymerized. In contrast, tubulin and vimentin appeared to be diffusely distributed throughout the cytoplasm of rounded cells. These results support the idea that cell rounding induced by M protein results from the depolymerization of microtubules and/or intermediate filaments
Role of Residues 121 to 124 of Vesicular Stomatitis Virus Matrix Protein in Virus Assembly and Virus-Host Interaction
The recent solution of the crystal structure of a fragment of the vesicular stomatitis virus matrix (M) protein suggested that amino acids 121 to 124, located on a solvent-exposed loop of the protein, are important for M protein self-association and association with membranes. These residues were mutated from the hydrophobic AVLA sequence to the polar sequence DKQQ. Expression and purification of this mutant from bacteria showed that it was structurally stable and that the mutant M protein had self-association kinetics similar to those of the wild-type M protein. Analysis of the membrane association of M protein in the context of infection with isogenic recombinant viruses showed that both wild-type and mutant M proteins associated with membranes to the same extent. Virus expressing the mutant M protein did show an approximately threefold-lower binding affinity of M protein for nucleocapsid-M complexes. In contrast to the relatively minor effects of the M protein mutation on virus assembly, the mutant virus exhibited growth restriction in MDBK but not BHK cells, a slower induction of apoptosis, and lower viral-protein synthesis. Despite translating less viral protein, the mutant virus produced more viral mRNA, showing that the mutant virus could not effectively promote viral translation. These results demonstrate that the 121-to-124 region of the VSV M protein plays a minor role in virus assembly but is involved in virus-host interactions and VSV replication by augmenting viral-mRNA translation
Ability of the Matrix Protein of Vesicular Stomatitis Virus To Suppress Beta Interferon Gene Expression Is Genetically Correlated with the Inhibition of Host RNA and Protein Synthesis
The vesicular stomatitis virus (VSV) matrix (M) protein plays a major role in the virus-induced inhibition of host gene expression. It has been proposed that the inhibition of host gene expression by M protein is responsible for suppressing activation of host interferon gene expression. Most wild-type (wt) strains of VSV induce little if any interferon gene expression. Interferon-inducing mutants of VSV have been isolated previously, many of which contain mutations in their M proteins. However, it was not known whether these M protein mutations were responsible for the interferon-inducing phenotype of these viruses. Alternatively, mutations in other genes besides the M gene may enhance the ability of VSV to induce interferons. These hypotheses were tested by transfecting cells with mRNA expressing wt and mutant M proteins in the absence of other viral components and determining their ability to inhibit interferon gene expression. The M protein mutations were the M51R mutation originally found in the tsO82 and T1026R1 mutant viruses, the double substitution V221F and S226R found in the TP3 mutant virus, and the triple substitution E213A, V221F, and S226R found in the TP2 mutant virus. wt M proteins suppressed expression of luciferase from the simian virus 40 promoter and from the beta interferon (IFN-Ξ²) promoter, while M proteins of interferon-inducing viruses were unable to inhibit luciferase expression from either promoter. The M genes of the interferon-inducing mutants of VSV were incorporated into the wt background of a recombinant VSV infectious cDNA clone. The resulting recombinant viruses were tested for their ability to activate interferon gene expression and for their ability to inhibit host RNA and protein synthesis. Each of the recombinant viruses containing M protein mutations induced expression of a luciferase reporter gene driven by the IFN-Ξ² promoter and induced production of interferon bioactivity more effectively than viruses containing wt M proteins. Furthermore, the M protein mutant viruses were defective in their ability to inhibit both host RNA synthesis and host protein synthesis. These data support the idea that wt M protein suppresses interferon gene expression through the general inhibition of host RNA and protein synthesis
Complexes of Vesicular Stomatitis Virus Matrix Protein with Host Rae1 and Nup98 Involved in Inhibition of Host Transcription
<div><p>Vesicular stomatitis virus (VSV) suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M) protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.</p> </div
Effects of silencing the expression of Rae1 or Nup98 on host and viral transcription in VSV-infected cells.
<p>HeLa cells were either not transfected or transfected with Rae1 siRNA (<b>A</b>), Nup98 siRNA (<b>B</b>) or non-targeting (NT) siRNA. At 72 hours post-transfection, cells were either mock or infected with recombinant wild-type (rwt) virus for 6 hours in the presence or absence of actinomycin D (ActD, 5 Β΅g/ml). Cells were labeled with [<sup>3</sup>H] uridine for 30 minutes. Cells were lysed and RNA was precipitated using trichloroacetic acid, and acid precipitable radioactivity was measured. The graph represents host (ActD sensitive) and viral (ActD insensitive) RNA synthesis expressed as a percentage of total RNA synthesis in mock infected cells as illustrated in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002929#ppat-1002929-t001" target="_blank">Table 1</a>. The data shown are means Β± standard deviation from five independent experiments.</p