1,903 research outputs found

    Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy

    Get PDF
    Background-Although studies have suggested that "late-onset" hypertrophic cardiomyopathy (HCM) may be caused by sarcomeric protein gene mutations, the cause of HCM in the majority of patients is unknown. This study determined the prevalence of a potentially treatable cause of hypertrophy, Anderson-Fabry disease, in a HCM referral population.Methods and Results-Plasma alpha-galactosidase A (alpha-Gal) was measured in 79 men with HCM who were diagnosed at greater than or equal to40 years of age (52.9 +/- 7.7 years; range, 40-71 years) and in 74 men who were diagnosed at <40 years (25.9 +/- 9.2 years; range, 8-39 years). Five patients (6.3%) with late-onset disease and 1 patient (1.4%) diagnosed at <40 years had low alpha-Gal activity. Of these 6 patients, 3 had angina, 4 were in New York Heart Association class 2, 5 had palpitations, and 2 had a history of syncope. Hypertrophy was concentric in 5 patients and asymmetric in 1 patient. One patient had left ventricular outflow tract obstruction. All patients with low alpha-Gal activity had alpha-Gal gene mutations.Conclusion-Anderson-Fabry disease should be considered in all cases of unexplained hypertrophy. Its recognition is important given the advent of specific replacement enzyme therapy

    Clinical expression of plakophilin-2 mutations in familial arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Background - Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disorder characterized by loss of cardiomyocytes and their replacement by adipose and fibrous tissue. It is considered a disease of cell adhesion because mutations in desmosomal genes, desmoplakin and plakoglobin, have been implicated in the pathogenesis of ARVC. In a recent report, mutations in plakophilin-2, a gene highly expressed in cardiac desmosomes, have been shown to cause ARVC.Methods and Results - We investigated 100 white patients with ARVC for mutations in plakophilin-2. Nine different mutations were identified by direct sequencing in 11 cases. Five of these mutations are novel (A733fsX740, L586fsX658, V570fsX576, R413X, and P533fsX561) and predicted to cause a premature truncation of the plakophilin-2 protein. Family studies showed incomplete disease expression in mutation carriers and identified a number of individuals who would be misdiagnosed with the existing International Task Force and modified diagnostic criteria for ARVC.Conclusions - In this study, we provide new evidence that mutations in the desmosomal plakophilin-2 gene can cause ARVC. A systematic clinical evaluation of mutation carriers within families demonstrated variable phenotypic expression, even among individuals with the same mutation, and highlighted the need for a more accurate set of diagnostic criteria for ARVC

    Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy.

    Get PDF
    BACKGROUND: Sarcomere protein mutations in hypertrophic cardiomyopathy induce subtle cardiac structural changes before the development of left ventricular hypertrophy (LVH). We have proposed that myocardial crypts are part of this phenotype and independently associated with the presence of sarcomere gene mutations. We tested this hypothesis in genetic hypertrophic cardiomyopathy pre-LVH (genotype positive, LVH negative [G+LVH-]). METHODS AND RESULTS: A multicenter case-control study investigated crypts and 22 other cardiovascular magnetic resonance parameters in subclinical hypertrophic cardiomyopathy to determine their strength of association with sarcomere gene mutation carriage. The G+LVH- sample (n=73) was 29 ± 13 years old and 51% were men. Crypts were related to the presence of sarcomere mutations (for ≥1 crypt, β=2.5; 95% confidence interval [CI], 0.5-4.4; P=0.014 and for ≥2 crypts, β=3.0; 95% CI, 0.8-7.9; P=0.004). In combination with 3 other parameters: anterior mitral valve leaflet elongation (β=2.1; 95% CI, 1.7-3.1; P<0.001), abnormal LV apical trabeculae (β=1.6; 95% CI, 0.8-2.5; P<0.001), and smaller LV end-systolic volumes (β=1.4; 95% CI, 0.5-2.3; P=0.001), multiple crypts indicated the presence of sarcomere gene mutations with 80% accuracy and an area under the curve of 0.85 (95% CI, 0.8-0.9). In this G+LVH- population, cardiac myosin-binding protein C mutation carriers had twice the prevalence of crypts when compared with the other combined mutations (47 versus 23%; odds ratio, 2.9; 95% CI, 1.1-7.9; P=0.045). CONCLUSIONS: The subclinical hypertrophic cardiomyopathy phenotype measured by cardiovascular magnetic resonance in a multicenter environment and consisting of crypts (particularly multiple), anterior mitral valve leaflet elongation, abnormal trabeculae, and smaller LV systolic cavity is indicative of the presence of sarcomere gene mutations and highlights the need for further study

    Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study

    Get PDF
    Anecdotal observations suggest that sub-clinical electrophysiological manifestations of arrhythmogenic right ventricular cardiomyopathy (ARVC) develop before detectable structural changes ensue on cardiac imaging. To test this hypothesis, we investigated a murine model with conditional cardiac genetic deletion of one desmoplakin allele (DSP ±) and compared the findings to patients with non-diagnostic features of ARVC who carried mutations in desmoplakin

    Epicardial myocardial strain abnormalities may identify the earliest stages of arrhythmogenic cardiomyopathy.

    Get PDF
    The aim of this cohort study was to evaluate the value of echocardiographic multilayer strain analysis in the identification of arrhythmogenic cardiomyopathy (AC) in its earliest stages in which sudden cardiac death can occurs. Twenty seven asymptomatic relatives of AC probands (mean age 39.6 ± 19.5 years, 37 % male) with a desmosomal pathogenic mutation but no additional criteria for AC (group II) were compared to age and sex-matched healthy controls (group I). In addition, 70 patients harboring a pathogenic desmosomal mutation with "definitive" diagnosis of AC (group IV), and 19 subjects with "borderline" diagnosis (group III) were also studied. A standard echocardiographic evaluation plus left (LV) and right ventricular global and regional transmural, endocardial, and epicardial longitudinal strain (LS) analysis, was performed. In group II, while LV ejection fraction, fractional shortening, and S' were not significantly reduced compared to controls, transmural global LS was significantly reduced to 19.3 ± 1.8 % in group II versus 20.9 ± 1.1 % in controls (p = 0.0003). Compared to controls, group II presented significant (p < 0.05) regional LS decrease in the basal infero-lateral, antero-lateral, latero-apical, infero-septal, and septo-apical segments. Moreover, LS of the latero-apical and the basal antero-lateral segments was significantly altered in the epicardium (p < 0.05) but not significantly in the endocardium. Global and regional LV LS analysis allows detection of AC in an early or non-diagnostic stage of the disease. Moreover, epicardial LS analysis allows the detection of abnormalities earlier than endocardial LS

    Effects of the Active Choices Program on Self-Managed Physical Activity and Social Connectedness in Australian Defence Force Veterans: Protocol for a Cluster-Randomized Trial.

    Get PDF
    BACKGROUND: A stepped-down program is one in which clients transition from the care of a health professional to self-managed care. Very little is known about the effectiveness of stepped-down physical activity (PA) programs for military service veterans. OBJECTIVE: This study will test Active Choices, a stepped-down behavioral support program designed to help Australian Defence Force veterans and their dependents who are clients of the Department of Veterans' Affairs, transition from treatment by an exercise physiologist or physiotherapist to self-managed PA. METHODS: The study is a parallel-group, randomized trial, with city-based exercise physiology or physiotherapy practices that recruit eligible Department of Veterans' Affairs clients assigned to Active Choices or a comparison program. The study aims to recruit 52 participants (26 in each group). The Active Choices program will consist of 2 face-to-face (Weeks 1, 12) and 2 telephone (Weeks 4 and 8) consultations. During these sessions, the participant and Active Choices consultant will utilize an evidence-based resource booklet to review the key benefits of an active lifestyle, build an action plan for PA preferences, set and review goals, self-monitor progress relative to set goals, and discuss strategies to overcome PA barriers. Linking participants to local PA communities to overcome social isolation will be a program priority. The comparison program will consist of 2 consultations (Weeks 1 and 12) and use fewer behavioral support strategies (education, self-monitoring, and action planning only) than Active Choices. Outcome measures will be administered at baseline, end-intervention (12 weeks), and follow-up (24 weeks) to assess changes in moderate intensity self-managed PA, psychological well-being, and social connectedness. We will also measure health service utilization and costs as well as PA choices across the intervention period. End-intervention interviews will capture participant experiences. RESULTS: Due to the impacts of the COVID-19 pandemic on human research activities in Australia, participant recruitment will commence when it is safe and feasible to do so. CONCLUSIONS: Findings will provide valuable pilot data to support up-scaling of the program and larger effectiveness trials with regional and rural as well as city-based Australian Defence Force veterans and their dependents. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry (ANZCTR): ACTRN12620000559910; https://www.anzctr.org.au/ACTRN12620000559910.aspx. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/21911

    Exploring differential item functioning in the SF-36 by demographic, clinical, psychological and social factors in an osteoarthritis population

    Get PDF
    The SF-36 is a very commonly used generic measure of health outcome in osteoarthritis (OA). An important, but frequently overlooked, aspect of validating health outcome measures is to establish if items work in the same way across subgroup of a population. That is, if respondents have the same 'true' level of outcome, does the item give the same score in different subgroups or is it biased towards one subgroup or another. Differential item functioning (DIF) can identify items that may be biased for one group or another and has been applied to measuring patient reported outcomes. Items may show DIF for different conditions and between cultures, however the SF-36 has not been specifically examined in an osteoarthritis population nor in a UK population. Hence, the aim of the study was to apply the DIF method to the SF-36 for a UK OA population. The sample comprised a community sample of 763 people with OA who participated in the Somerset and Avon Survey of Health. The SF-36 was explored for DIF with respect to demographic, social, clinical and psychological factors. Well developed ordinal regression models were used to identify DIF items. Results: DIF items were found by age (6 items), employment status (6 items), social class (2 items), mood (2 items), hip v knee (2 items), social deprivation (1 item) and body mass index (1 item). Although the impact of the DIF items rarely had a significant effect on the conclusions of group comparisons, in most cases there was a significant change in effect size. Overall, the SF-36 performed well with only a small number of DIF items identified, a reassuring finding in view of the frequent use of the SF-36 in OA. Nevertheless, where DIF items were identified it would be advisable to analyse data taking account of DIF items, especially when age effects are the focus of interest

    Filamin C variants are associated with a distinctive clinical and immunohistochemical arrhythmogenic cardiomyopathy phenotype.

    Get PDF
    BACKGROUND: Pathogenic variants in the filamin C (FLNC) gene are associated with inherited cardiomyopathies including dilated cardiomyopathy with an arrhythmogenic phenotype. We evaluated FLNC variants in arrhythmogenic cardiomyopathy (ACM) and investigated the disease mechanism at a molecular level. METHODS: 120 gene-elusive ACM patients who fulfilled diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy (ARVC) were screened by whole exome sequencing. Fixed cardiac tissue from FLNC variant carriers who had died suddenly was investigated by histology and immunohistochemistry. RESULTS: Novel or rare FLNC variants, four null and five variants of unknown significance, were identified in nine ACM probands (7.5%). In FLNC null variant carriers (including family members, n = 16) Task Force diagnostic electrocardiogram repolarization/depolarization abnormalities were uncommon (19%), echocardiography was normal in 69%, while 56% had >500 ventricular ectopics/24 h or ventricular tachycardia on Holter and 67% had late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMRI). Ten gene positive individuals (63%) had abnormalities on ECG or CMRI that are not included in the current diagnostic criteria for ARVC. Immunohistochemistry showed altered key protein distribution, distinctive from that observed in ARVC, predominantly in the left ventricle. CONCLUSIONS: ACM associated with FLNC variants presents with a distinctive phenotype characterized by Holter arrhythmia and LGE on CMRI with unremarkable ECG and echocardiographic findings. Clinical presentation in asymptomatic mutation carriers at risk of sudden death may include abnormalities which are currently non-diagnostic for ARVC. At the molecular level, the pathogenic mechanism related to FLNC appears different to classic forms of ARVC caused by desmosomal mutations
    corecore