9,575 research outputs found

    Optimal payload rate limit algorithm for zero-G manipulators

    Get PDF
    An algorithm for continuously computing safe maximum relative velocities for two bodies joined by a manipulator is discussed. The maximum velocities are such that if the brakes are applied at that instant, the ensuing travel between the bodies will be less than or equal to a predetermined amount. An improvement in the way this limit is computed for space manipulators is shown. The new method is explained, test cases are posed, and the results of these tests are displayed and discussed

    High fidelity single-shot readout of a transmon qubit using a SLUG {\mu}wave amplifier

    Full text link
    We report high-fidelity, quantum nondemolition, single-shot readout of a superconducting transmon qubit using a DC-biased superconducting low-inductance undulatory galvanometer(SLUG) amplifier. The SLUG improves the system signal-to-noise ratio by 7 dB in a 20 MHz window compared with a bare HEMT amplifier. An optimal cavity drive pulse is chosen using a genetic search algorithm, leading to a maximum combined readout and preparation fidelity of 91.9% with a measurement time of Tmeas = 200ns. Using post-selection to remove preparation errors caused by heating, we realize a combined preparation and readout fidelity of 94.3%.Comment: 4 pages and 3 figure

    Hybrid Atom--Photon Quantum Gate in a Superconducting Microwave Resonator

    Get PDF
    We propose a novel hybrid quantum gate between an atom and a microwave photon in a superconducting coplanar waveguide cavity by exploiting the strong resonant microwave coupling between adjacent Rydberg states. Using experimentally achievable parameters gate fidelities >0.99> 0.99 are possible on sub-μ\mus timescales for waveguide temperatures below 40 mK. This provides a mechanism for generating entanglement between two disparate quantum systems and represents an important step in the creation of a hybrid quantum interface applicable for both quantum simulation and quantum information processing.Comment: 4 pages, 4 figure

    Learning physics in context: a study of student learning about electricity and magnetism

    Full text link
    This paper re-centres the discussion of student learning in physics to focus on context. In order to do so, a theoretically-motivated understanding of context is developed. Given a well-defined notion of context, data from a novel university class in electricity and magnetism are analyzed to demonstrate the central and inextricable role of context in student learning. This work sits within a broader effort to create and analyze environments which support student learning in the sciencesComment: 36 pages, 4 Figure

    Optimized Coplanar Waveguide Resonators for a Superconductor-Atom Interface

    Get PDF
    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor-atom experiments at 4.2 K, we show that resonator quality factors above 10410^4 can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μ\mum above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.Comment: 4 pages, 4 figure

    Magnetism in SQUIDs at Millikelvin Temperatures

    Full text link
    We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. The data is compatible with the thermal polarization of surface spins in the trapped fields of the vortices. In the absence of trapped flux, we observe evidence of spin-glass freezing at low temperature. These results suggest an explanation for the "universal" 1/f flux noise in SQUIDs and superconducting qubits.Comment: 4 pages, 4 figure

    Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout

    Full text link
    We have detected coherent quantum oscillations between Josephson phase qubits and microscopic critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. The period of the oscillations is consistent with the spectroscopic splittings observed in the qubit's resonant frequency. The results point to a possible mechanism for decoherence and reduced measurement fidelity in superconducting qubits and demonstrate the means to measure two-qubit interactions in the time domain

    Blogging in the physics classroom: A research-based approach to shaping students' attitudes towards physics

    Full text link
    Even though there has been a tremendous amount of research done in how to help students learn physics, students are still coming away missing a crucial piece of the puzzle: why bother with physics? Students learn fundamental laws and how to calculate, but come out of a general physics course without a deep understanding of how physics has transformed the world around them. In other words, they get the "how" but not the "why". Studies have shown that students leave introductory physics courses almost universally with decreased expectations and with a more negative attitude. This paper will detail an experiment to address this problem: a course weblog or "blog" which discusses real-world applications of physics and engages students in discussion and thinking outside of class. Specifically, students' attitudes towards the value of physics and its applicability to the real-world were probed using a 26-question Likert scale survey over the course of four semesters in an introductory physics course at a comprehensive Jesuit university. We found that students who did not participate in the blog study generally exhibited a deterioration in attitude towards physics as seen previously. However, students who read, commented, and were involved with the blog maintained their initially positive attitudes towards physics. Student response to the blog was overwhelmingly positive, with students claiming that the blog made the things we studied in the classroom come alive for them and seem much more relevant.Comment: 20 pages, 6 figure

    Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction

    Full text link
    We analyze the quantum efficiency of a microwave photon detector based on a current-biased Josephson junction. We consider the Jaynes-Cummings Hamiltonian to describe coupling between the photon field and the junction. We then take into account coupling of the junction and the resonator to the environment. We solve the equation of motion of the density matrix of the resonator-junction system to compute the quantum efficiency of the detector as a function of detection time, bias current, and energy relaxation time. Our results indicate that junctions with modest coherence properties can provide efficient detection of single microwave photons, with quantum efficiency in excess of 80%.Comment: 5 pages, 5 figures, PRB accepted versio
    corecore