437 research outputs found

    SU(3) quasidynamical symmetry underlying the Alhassid--Whelan arc of regularity

    Full text link
    The first example of an empirically manifested quasi dynamical symmetry trajectory in the interior of the symmetry triangle of the Interacting Boson Approximation model is identified for large boson numbers. Along this curve, extending from SU(3) to near the critical line of the first order phase transition, spectra exhibit nearly the same degeneracies that characterize the low energy levels of SU(3). This trajectory also lies close to the Alhassid-Whelan arc of regularity, the unique interior region of regular behavior connecting the SU(3) and U(5) vertices, thus offering a possible symmetry-based interpretation of that narrow zone of regularity amidst regions of more chaotic spectra.Comment: 4 pages, LaTeX, 5 eps figure

    Alternative Interpretation of Sharply Rising E0 Strengths in Transitional Regions

    Full text link
    It is shown that strong 0+2 -> 0+1 E0 transitions provide a clear signature of phase transitional behavior in finite nuclei. Calculations using the IBA show that these transition strengths exhibit a dramatic and robust increase in spherical-deformed shape transition regions, that this rise matches well the existing data, that the predictions of these E0 transitions remain large in deformed nuclei, and that these properties are intrinsic to the way that collectivity and deformation develop through the phase transitional region in the model, arising from the specific d-boson coherence in the wave functions, and that they do not necessarily require the explicit mixing of normal and intruder configurations from different IBA spaces.Comment: 6 pages, 3 figure

    The role of the g9/2 orbital in the development of collectivity in the A = 60 region: The case of 61Co

    Get PDF
    An extensive study of the level structure of 61Co has been performed following the complex 26Mg(48Ca, 2a4npg)61Co reaction at beam energies of 275, 290 and 320 MeV using Gammasphere and the Fragment Mass Analyzer (FMA). The low-spin structure is discussed within the framework of shell-model calculations using the GXPF1A effective interaction. Two quasi-rotational bands consisting of stretched-E2 transitions have been established up to spins I = 41/2 and (43/2), and excitation energies of 17 and 20 MeV, respectively. These are interpreted as signature partners built on a neutron {\nu}(g9/2)2 configuration coupled to a proton {\pi}p3/2 state, based on Cranked Shell Model (CSM) calculations and comparisons with observations in neighboring nuclei. In addition, four I = 1 bands were populated to high spin, with the yrast dipole band interpreted as a possible candidate for the shears mechanism, a process seldom observed thus far in this mass region

    Use of Malaria Rapid Diagnostic Test to Identify Plasmodium knowlesi Infection

    Get PDF
    Reports of human infection with Plasmodium knowlesi, a monkey malaria, suggest that it and other nonhuman malaria species may be an emerging health problem. We report the use of a rapid test to supplement microscopic analysis in distinguishing the 5 malaria species that infect humans

    Anomalous behavior of the first excited 0+^{+} state in NZN \approx Z nuclei

    Full text link
    A study of the energies of the first excited 0+0^+ states in all even-even ZZ \geq 8 nuclei reveals an anomalous behavior in some nuclei with NN = ZZ, ZZ ±\pm 2. We analyze these irregularities in the framework of the shell model. It is shown that proton-neutron correlations play an important role in this phenomenon.Comment: 4 pages, 5 figure

    On the lifetime of the 2+ state in 10C

    Full text link
    The lifetime of the J=2+ state in 10C was measured using the Doppler Shift Attenuation Method following the inverse kinematics p(10B,n)10C reaction at 95 MeV. The 2+ state, at 3354 keV, has tau = 219\pm(7)stat \pm(10)sys fs corresponding to a B(E2) # of 8.8(3) e2fm4. This measurement,combined with that recently determined for 10Be (9.2(3) e2fm4), provides a unique challenge to abinitio calculations, testing the structure of these states, including the isospin symmetry of the wave functions. Quantum Monte Carlo calculations using realistic two- and three-nucleon Hamiltonians that reproduce the 10Be B(E2) value generally predict a larger 10C B(E2) probability but with considerable sensitivity to the admixture of different spatial symmetry components in the wave functions, and to the three-nucleon potential used.Comment: Experimental and Theoretical Investigatio
    corecore