4,174 research outputs found

    Painlev\'e Transcendent Describes Quantum Correlation Function of the XXZ Antiferromagnet away from the free-fermion point

    Full text link
    We consider quantum correlation functions of the antiferromagnetic spin-12\frac{1}{2} Heisenberg XXZ spin chain in a magnetic field. We show that for a magnetic field close to the critical field hch_c (for the critical magnetic field the ground state is ferromagnetic) certain correlation functions can be expressed in terms of the solution of the Painlev\'e V transcendent. This establishes a relation between solutions of Painlev\'e differential equations and quantum correlation functions in models of {\sl interacting} fermions. Painlev\'e transcendents were known to describe correlation functions in models with free fermionic spectra.Comment: 10 pages, LaTeX2

    Griffiths-McCoy Singularities in the Random Transverse-Field Ising Spin Chain

    Full text link
    We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical properties by numerical methods and scaling considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to new quantities, such as the non-linear susceptibility, higher excitations and the energy-density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law singularities and the corresponding critical exponents, which vary with the distance from the critical point, can be related to the dynamical exponent z, the latter being the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the average energy-density autocorrelations decay with another exponent as [G^e]_av(t)~t^{-2-1/z}.Comment: 8 pages RevTeX, 8 eps-figures include

    Exact renormalization of the random transverse-field Ising spin chain in the strongly ordered and strongly disordered Griffiths phases

    Full text link
    The real-space renormalization group (RG) treatment of random transverse-field Ising spin chains by Fisher ({\it Phys. Rev. B{\bf 51}, 6411 (1995)}) has been extended into the strongly ordered and strongly disordered Griffiths phases and asymptotically exact results are obtained. In the non-critical region the asymmetry of the renormalization of the couplings and the transverse fields is related to a non-linear quantum control parameter, Δ\Delta, which is a natural measure of the distance from the quantum critical point. Δ\Delta, which is found to stay invariant along the RG trajectories and has been expressed by the initial disorder distributions, stands in the singularity exponents of different physical quantities (magnetization, susceptibility, specific heat, etc), which are exactly calculated. In this way we have observed a weak-universality scenario: the Griffiths-McCoy singularities does not depend on the form of the disorder, provided the non-linear quantum control parameter has the same value. The exact scaling function of the magnetization with a small applied magnetic field is calculated and the critical point magnetization singularity is determined in a simple, direct way.Comment: 11 page

    Lifespan theorem for constrained surface diffusion flows

    Get PDF
    We consider closed immersed hypersurfaces in R3\R^{3} and R4\R^4 evolving by a class of constrained surface diffusion flows. Our result, similar to earlier results for the Willmore flow, gives both a positive lower bound on the time for which a smooth solution exists, and a small upper bound on a power of the total curvature during this time. By phrasing the theorem in terms of the concentration of curvature in the initial surface, our result holds for very general initial data and has applications to further development in asymptotic analysis for these flows.Comment: 29 pages. arXiv admin note: substantial text overlap with arXiv:1201.657

    Magnetic friction in Ising spin systems

    Full text link
    A new contribution to friction is predicted to occur in systems with magnetic correlations: Tangential relative motion of two Ising spin systems pumps energy into the magnetic degrees of freedom. This leads to a friction force proportional to the area of contact. The velocity and temperature dependence of this force are investigated. Magnetic friction is strongest near the critical temperature, below which the spin systems order spontaneously. Antiferromagnetic coupling leads to stronger friction than ferromagnetic coupling with the same exchange constant. The basic dissipation mechanism is explained. If the coupling of the spin system to the heat bath is weak, a surprising effect is observed in the ordered phase: The relative motion acts like a heat pump cooling the spins in the vicinity of the friction surface.Comment: 4 pages, 4 figure

    Rejoinder to the Response arXiv:0812.2330 to 'Comment on a recent conjectured solution of the three-dimensional Ising model'

    Full text link
    We comment on Z. D. Zhang's Response [arXiv:0812.2330] to our recent Comment [arXiv:0811.3876] addressing the conjectured solution of the three-dimensional Ising model reported in [arXiv:0705.1045].Comment: 2 page

    Dimer and N\'eel order-parameter fluctuations in the spin-fluid phase of the s=1/2 spin chain with first and second neighbor couplings

    Full text link
    The dynamical properties at T=0 of the one-dimensional (1D) s=1/2 nearest-neighbor (nn) XXZ model with an additional isotropic next-nearest-neighbor (nnn) coupling are investigated by means of the recursion method in combination with techniques of continued-fraction analysis. The focus is on the dynamic structure factors S_{zz}(q,\omega) and S_{DD}(q,\omega), which describe (for q=\pi) the fluctuations of the N\'eel and dimer order parameters, respectively. We calculate (via weak-coupling continued-fraction analysis) the dependence on the exchange constants of the infrared exponent, the renormalized bandwidth of spinon excitations, and the spectral-weight distribution in S_{zz}(\pi,\omega) and S_{DD}(\pi,\omega), all in the spin-fluid phase, which is realized for planar nnnn anisotropy and sufficiently weak nnn coupling. For some parameter values we find a discrete branch of excitations above the spinon continuum. They contribute to S_{zz}(q,\omega) but not to S_{DD}(q,\omega).Comment: RevTex file (7 pages), 8 figures (uuencoded ps file) available from author

    Density Profiles in Random Quantum Spin Chains

    Full text link
    We consider random transverse-field Ising spin chains and study the magnetization and the energy-density profiles by numerically exact calculations in rather large finite systems (L128L\le 128). Using different boundary conditions (free, fixed and mixed) the numerical data collapse to scaling functions, which are very accurately described by simple analytic expressions. The average magnetization profiles satisfy the Fisher-de Gennes scaling conjecture and the corresponding scaling functions are indistinguishable from those predicted by conformal invariance.Comment: 4 pages RevTeX, 4 eps-figures include

    A cryogenic liquid-mirror telescope on the moon to study the early universe

    Full text link
    We have studied the feasibility and scientific potential of zenith observing liquid mirror telescopes having 20 to 100 m diameters located on the moon. They would carry out deep infrared surveys to study the distant universe and follow up discoveries made with the 6 m James Webb Space Telescope (JWST), with more detailed images and spectroscopic studies. They could detect objects 100 times fainter than JWST, observing the first, high-red shift stars in the early universe and their assembly into galaxies. We explored the scientific opportunities, key technologies and optimum location of such telescopes. We have demonstrated critical technologies. For example, the primary mirror would necessitate a high-reflectivity liquid that does not evaporate in the lunar vacuum and remains liquid at less than 100K: We have made a crucial demonstration by successfully coating an ionic liquid that has negligible vapor pressure. We also successfully experimented with a liquid mirror spinning on a superconducting bearing, as will be needed for the cryogenic, vacuum environment of the telescope. We have investigated issues related to lunar locations, concluding that locations within a few km of a pole are ideal for deep sky cover and long integration times. We have located ridges and crater rims within 0.5 degrees of the North Pole that are illuminated for at least some sun angles during lunar winter, providing power and temperature control. We also have identified potential problems, like lunar dust. Issues raised by our preliminary study demand additional in-depth analyses. These issues must be fully examined as part of a scientific debate we hope to start with the present article.Comment: 35 pages, 11 figures. To appear in Astrophysical Journal June 20 200
    corecore