49 research outputs found

    Towards self-powered and autonomous wearable glucose sensor

    Get PDF
    Blood glucose diagnostic systems are a world-wide success story. Nevertheless, all the painless solutions available are too expensive to be disposable. We aim to bridge this gap by developing a painless disposable diabetes diagnostic patch. Our envisaged device is fully integrated and autonomous: harvests the required energy from the environment and features sensor autocalibration in real-time. In this paper, we present the design and preliminary results of the different parts in the wearable patch: electrochemical glucose sensor developed on scalable PCB technology, biofuel cell based on glucose in the biofluid sample, and instrumentation electronics designed on a PCB with energy and data management blocks

    TP53 modulates radiotherapy fraction size sensitivity in normal and malignant cells

    Get PDF
    Recent clinical trials in breast and prostate cancer have established that fewer, larger daily doses (fractions) of radiotherapy are safe and effective, but these do not represent personalised dosing on a patient-by-patient basis. Understanding cell and molecular mechanisms determining fraction size sensitivity is essential to fully exploit this therapeutic variable for patient benefit. The hypothesis under test in this study is that fraction size sensitivity is dependent on the presence of wild-type (WT) p53 and intact non-homologous end-joining (NHEJ). Using single or split-doses of radiation in a range of normal and malignant cells, split-dose recovery was determined using colony-survival assays. Both normal and tumour cells with WT p53 demonstrated significant split-dose recovery, whereas Li-Fraumeni fibroblasts and tumour cells with defective G1/S checkpoint had a large S/G2 component and lost the sparing effect of smaller fractions. There was lack of split-dose recovery in NHEJ-deficient cells and DNA-PKcs inhibitor increased sensitivity to split-doses in glioma cells. Furthermore, siRNA knockdown of p53 in fibroblasts reduced split-dose recovery. In summary, cells defective in p53 are less sensitive to radiotherapy fraction size and lack of split-dose recovery in DNA ligase IV and DNA-PKcs mutant cells suggests the dependence of fraction size sensitivity on intact NHEJ

    Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs

    Get PDF
    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important

    Towards self-powered and autonomous wearable glucose sensor

    Get PDF
    Blood glucose diagnostic systems are a world-wide success story. Nevertheless, all the painless solutions available are too expensive to be disposable. We aim to bridge this gap by developing a painless disposable diabetes diagnostic patch. Our envisaged device is fully integrated and autonomous. It harvests the required energy from the environment and features sensor auto-calibration in real-time. In this paper, we present the design and preliminary results of the different parts in the patch including an electrochemical glucose sensor, an enzymatic biofuel cell, and a wireless instrumentation electronics all designed and implemented on the printed circuit board (PCB) technology
    corecore