3,529 research outputs found

    The Stokes boundary layer for a thixotropic or antithixotropic fluid

    Get PDF
    We present a mathematical investigation of the oscillatory boundary layer (‘Stokes layer’) in a semi-infinite fluid bounded by an oscillating wall (the socalled ‘Stokes problem’), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid. For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall

    Opportunistic detection of atrial fibrillation using blood pressure monitors: a systematic review

    Get PDF
    Background: Atrial Fibrillation (AF) affects around 2% of the population and early detection is beneficial, allowing patients to begin potentially life-saving anticoagulant therapies. Blood pressure (BP) monitors may offer an opportunity to screen for AF. Aim: To identify and appraise studies which report the diagnostic accuracy of automated BP monitors used for opportunistic AF detection. Methods: A systematic search was performed of the Medline, Medline-in-process and Embase literature databases. Papers were eligible if they described primary studies of the evaluation of a BP device for AF detection, were published in a peer reviewed journal and reported values for the sensitivity and specificity. Included studies were appraised using the QUADAS-2 tool to assess their risk of bias and applicability to opportunistic AF detection. Values for the sensitivity and specificity of AF detection were extracted from each paper and compared. Results and Conclusion: We identified seven papers evaluating six devices from two manufacturers. Only one study scored low risk in all of the QUADAS-2 domains. All studies reported specificity greater than 85% and six reported sensitivity greater than 90%. The studies showed that blood pressure devices with embedded algorithms for detecting arrhythmias show promise as screening tools for AF, comparing favourably with manual pulse palpation. But the studies used different methodologies and many were subject to potential bias. More studies are needed to more precisely define the sensitivity and specificity of opportunistic screening for AF during blood pressure measurement before its clinical utility in the population of interest can be assessed fully

    Accuracy of pulse interval timing in ambulatory blood pressure measurement

    Get PDF
    Blood pressure (BP) monitors rely on pulse detection. Some blood pressure monitors use pulse timings to analyse pulse interval variability for arrhythmia screening, but this assumes that the pulse interval timings detected from BP cuffs are accurate compared with RR intervals derived from ECG. In this study we compared the accuracy of pulse intervals detected using an ambulatory blood pressure monitor (ABPM) with single lead ECG. Twenty participants wore an ABPM for three hours and a data logger which synchronously measured cuff pressure and ECG. RR intervals were compared with corresponding intervals derived from the cuff pressure tracings using three different pulse landmarks. Linear mixed effects models were used to assess differences between ECG and cuff pressure timings and to investigate the effect of potential covariates. In addition, the maximum number of successive oscillometric beats detectable in a measurement was assessed. From 243 BP measurements, the foot landmark of the oscillometric pulse was found to be associated with fewest covariates and had a random error of 9.5 ms. 99% of the cuff pressure recordings had more than 10 successive detectable oscillometric beats. RR intervals can be accurately estimated using an ABPM

    The Stokes boundary layer for a power-law fluid

    Get PDF
    We develop semi-analytical, self-similar solutions for the oscillatory boundary layer (‘Stokes layer’) in a semi-infinite power-law fluid bounded by an oscillating wall (the so-called Stokes problem). These solutions differ significantly from the classical solution for a Newtonian fluid, both in the non-sinusoidal form of the velocity oscillations and in the manner at which their amplitude decays with distance from the wall. In particular, for shear-thickening fluids the velocity reaches zero at a finite distance from the wall, and for shear-thinning fluids it decays algebraically with distance, in contrast to the exponential decay for a Newtonian fluid. We demonstrate numerically that these semi-analytical, self-similar solutions provide a good approximation to the flow driven by a sinusoidally oscillating wall

    Flow of a thixotropic or antithixotropic fluid in a slowly varying channel : the weakly advective regime

    Get PDF
    A general formulation of the governing equations for the slow, steady, two-dimensional flow of a thixotropic or antithixotropic fluid in a channel of slowly varying width is described. These equations are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the evolving microstructure of the fluid, described in terms of a scalar structure parameter. We demonstrate how the lubrication equations can be further simplified in the weakly advective regime in which the advective Deborah number is comparable to the aspect ratio of the flow, and present illustrative analytical and semi-analytical solutions for particular choices of the constitutive and kinetic laws, including a purely viscous Moore-Mewis-Wagner model and a regularised viscoplastic Houska model. The lubrication results also allow the calibration and validation of cross-sectionally averaged, or otherwise reduced, descriptions of thixotropic channel flow which provide a first step towards models of thixotropic flow in porous media, and we employ them to explain why such descriptions may be inadequate

    Coulomb Blockade in a Nonthermalized Quantum Dot

    Get PDF
    We investigate nonequilibrium transport properties of a quantum dot in the Coulomb blockade regime under the condition of negligible inelastic scattering during the dwelling time of the electrons in the dot. Using the quantum kinetic equation we show that the absence of thermalization leads to a double step in the distribution function of electrons on the dot, provided that it is symmetrically coupled to the leads. This drastically changes nonlinear transport through the dot resulting in an additional (compared to the thermalized case) jump in the conductance at voltages close to the charging energy, which could serve as an experimental manifestation of the absence of thermalization.</p

    Plasma membrane expression of GnRH receptors: regulation by antagonists in breast, prostate, and gonadotrope cell lines

    Get PDF
    In heterologous expression systems, human GnRH receptors (hGnRHRs) are poorly expressed at the cell surface and this may reflect inefficient exit from the endoplasmic reticulum. Here, we have defined the proportion of GnRHRs at the cell surface using a novel assay based on adenoviral transduction with epitope-tagged GnRHRs followed by staining and semi-automated imaging. We find that in MCF7 (breast cancer) cells, the proportional cell surface expression (PCSE) of hGnRHRs is remarkably low (<1%), when compared with Xenopus laevis (X) GnRHRs (∼40%). This distinction is retained at comparable whole cell expression levels, and the hGnRHR PCSE is increased by addition of the XGnRHR C-tail (h.XGnRHR) or by a membrane-permeant pharmacological chaperone (IN3). The IN3 effect is concentration- and time-dependent and IN3 also enhances the hGnRHR-mediated (but not h.XGnRHR- or mouse GnRHR-mediated) stimulation of [3H]inositol phosphate accumulation and the hGnRHR-mediated reduction in cell number. We also find that the PCSE for hGnRHRs and h.XGnRHRs is low and is greatly increased by IN3 in two hormone-dependent cancer lines, but is higher and less sensitive to IN3 in a gonadotrope line. Finally, we show that the effect of IN3 on hGnRHR PCSE is not mimicked or blocked by two peptide antagonists although they do increase the PCSE for h.XGnRHRs, revealing that an antagonist-occupied cell surface GnRHR conformation can differ from that of the unoccupied receptor. The low PCSE of hGnRHRs and this novel peptide antagonist effect may be important for understanding GnRHR function in extrapituitary sites

    ENVIROSAT-2000 report: Federal agency satellite requirements

    Get PDF
    The requirement of Federal agencies, other than NOAA, for the data and services of civil operational environmental satellites (both polar orbiting and geostationary) are summarized. Agency plans for taking advantage of proposed future Earth sensing space systems, domestic and foreign, are cited also. Current data uses and future requirements are addressed as identified by each agency
    corecore