31 research outputs found

    IgG aggregates are primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated pAb IgGs.

    No full text
    <p>(<b>A</b>) Left panel: SEC chromatograms for ~0.5 mg/mL of Aβ-isolated IVIg IgGs, and for IVIg, untreated, or diluted into column elution buffer (0.1 M glycine, pH 2.7) that was used to elute Aβ-bound IVIg IgGs. SEC was carried out using a Superdex 200 increase 10/300 GL column (GE Healthcare) that was equilibrated with PBS, pH 7.4. Right panel: IgG binding curves against plate-immobilized PFs for untreated IVIg, and for Aβ column-isolated IVIg IgGs that were used unfractionated (Unfrac) or as SEC-isolated monomers (SEC Mon) or aggregates (SEC Aggs). SEC Aggs consisted of a pool of IgG conformers (dimers and HMW species) that eluted before the monomeric antibody. (<b>B</b>) Left panel: SEC chromatograms for ~0.5 mg/mL dye-isolated IVIg IgGs, and for unfractionated IVIg that was untreated or diluted into column elution buffer (PBS containing 1.5 M NaCl, pH 7.4) that was used to elute dye-bound IVIg IgGs. Right panel: IgG binding curves against plate-immobilized PFs for unfractionated and SEC-isolated conformers of dye-isolated IVIg IgGs, and for untreated IVIg.</p

    Aβ-isolated but not heat-induced Avastin aggregates have enhanced avidity for PFs.

    No full text
    <p>(<b>A</b>) Left panel: SEC chromatograms for 0.3 mg/mL of Aβ-isolated Avastin IgGs, untreated Avastin, and for the antibody diluted into elution buffer (0.1 M glycine, pH 2.7) that was used to elute Aβ-bound Avastin IgGs. SEC was carried out using a Superdex 200 increase 10/300 GL column (GE Healthcare) that was equilibrated with PBS, pH 7.4. Right panel: Antibody binding curves against PFs for unfractionated IVIg and Avastin, and for Aβ-isolated Avastin IgGs. (<b>B</b>) Left panel: SEC chromatograms for ~5 mg/mL of unfractionated Avastin in PBS, pH 7.4, and for IgG conformers contained in supernatant of 71°C heated Avastin monomers (A<sub>400nm</sub> 0.5 sup) in PBS, pH 7.4. Right panel: Antibody binding curves against PFs for soluble (A<sub>400nm</sub> 0.5 sup) and insoluble (A<sub>400nm</sub> 0.5 pellet) IgG conformers of heat-treated Avastin monomers, and for untreated Avastin and IVIg.</p

    Unfractionated, Aβ- and Cibacron blue-isolated human IgGs binding to plate-immobilized PFs.

    No full text
    <p><sup>1</sup>Mon stands for IgG monomers.</p><p><sup>2,3</sup>SEC-isolated IgG monomers (mon), dimers, and HMW aggregates as shown in Figs <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137344#pone.0137344.g002" target="_blank">2</a> & <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137344#pone.0137344.g003" target="_blank">3</a>.</p><p>Each value for EC<sub>50</sub> and maximum signal amplitude was determined from the average of two to three sigmoidal fitted antibody binding curves, as shown in Figs <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137344#pone.0137344.g003" target="_blank">3</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137344#pone.0137344.g008" target="_blank">8</a>.</p

    A human mAb generated against a non-amyloid target binds aggregated Aβ.

    No full text
    <p>(<b>A</b>) Left panel: SEC chromatograms for ~15 mg/mL of mAb Avastin (anti-VEGF) and IVIg. SEC was carried out using a Superdex 200 Increase 10/300 GL column (GE Healthcare) equilibrated in PBS, pH 7.4. Right panel: Antibody binding curves against plate-immobilized PFs for unfractionated (Unfrac) IVIg, and for Avastin used unfractionated or as SEC-isolated monomers and dimers. (<b>B</b>) The top Western blots show immunoprecipitation (IP) of synthetic Aβ conformers (monomers (Mon), dimers, and PFs) by 100 μg/mL of Avastin and IVIg, and by 200 μg/mL of a pan-Aβ reactive polyclonal antibody, AW8. The blots were probed for Aβ using an Aβ N-terminal reactive mAb, 6E10 (Signet Laboratories). The lower Western blots show 20 μg/mL mAb Avastin's ability to IP 5 μg/mL of Aβ dimers and PFs in the presence of a 5-molar excess (with respect to Avastin) of a N-terminal 165-amino acid fragment of its immunogen VEGF (VEGF-165). Control IP experiments (Ctls) were carried out using 5 μg/mL mAb 6E10 and a mixture of Aβ dimers and PFs, or with 20 μg/mL Avastin and 1 μg/mL VEGF-165. The blots were probed for Aβ and VEGF-165 using mAb 6E10 and Avastin, respectively. In IPs carried out in the absence of VEGF-165, cross-reactivity of the secondary antibody, goat anti-human IgG (heavy and light, Jackson Immunoresearch Laboratories Inc), with Avastin’s Ig light chain caused a faint band that migrated near VEGF-165. (<b>C</b>) Avastin IgG conformers binding curves against plate-immobilized PFs in the presence or absence of a 1:10 dilution of IgG-depleted normal human sera. (<b>D</b>) Bar charts for solution-phase PF's, Aβ monomers, and non-amyloid native and aggregated molecule's inhibition of Avastin monomers an dimers binding to plate-immobilized PFs. Competition studies were carried out using 0.1 mg/mL competitors and concentrations of Avastin conformers that were equivalent to their EC<sub>50</sub> values for PFs: 500 nM IgG Mon, and 200 nM IgG dimer. Each competition curve was carried out in duplicate, and bars represent the standard error.</p

    IgG F(ab)ˈs but not Fc mediate IgG binding to PFs.

    No full text
    <p>Antibody binding curves are shown against plate-immobilized PFs for intact and fragmented IgGs from preparations of unfractionated IVIg (<b>A</b>) and for Cibacron blue-isolated IVIg IgGs (<b>B</b>). Antibody binding studies were carried out in triplicate and bars represent the standard error.</p
    corecore