503 research outputs found

    Renal function in Palestine sunbirds: elimination of excess water does not constrain energy intake

    Get PDF
    Copyright © 2004 Company of BiologistsAlthough the renal responses of birds to dehydration have received significant attention, the consequences of ingesting and processing large quantities of water have been less studied. Nectar-feeding birds must often deal with exceptionally high water intake rates in order to meet their high mass-specific energy demands. Birds that ingest large volumes of water may either eliminate excess water in the kidney or regulate the volume of water absorbed in the gastrointestinal tract. Because water absorption in the gastrointestinal tract of Palestine sunbirds (Nectarinia osea) decreases with increasing water ingestion rate, we predicted that glomerular filtration rate (GFR) in these birds would not be unusually high in spite of large ingested water loads. When feeding on dilute sucrose solutions, sunbirds ingested between 4 and 6 times their body mass in nectar per day, yet they were able to compensate for varying nectar energy density and increased thermoregulatory energy demands with no apparent difficulty. GFR was lower than predicted (1976.22±91.95 µl h-1), and was not exceptionally sensitive to water loading. Plasma glucose concentrations were high, and varied 1.8-fold between fasted (16.08± 0.75 mmol l-1) and fed (28.18±0.68 mmol l-1) sunbirds, but because GFR was low, glucose filtered load also remained relatively low. Essentially the entire glucose filtered load (98%) was recovered by the kidney. Renal fractional water reabsorption (FWR) decreased from 0.98 to 0.64 with increasing water intake. The ability of Palestine sunbirds to reduce the absorption of ingested water in the gastrointestinal tract may resolve the potential conflict between filtering a large excess of absorbed water in the kidney and simultaneously retaining filtered metabolites.Todd J. McWhorter, Carlos Martínez del Rio, Berry Pinshow and Lizanne Roxburg

    Correlating bacterial shedding with fecal corticosterone levels and serological responses from layer hens experimentally infected with Salmonella Typhimurium

    Get PDF
    Salmonella Enteriditis and Salmonella Typhimurium are commonly isolated during egg-related outbreaks of salmonellosis and represent a significant international public health issue. In Australia, Salmonella Typhimurium is the most common serovar identified in egg product related foodborne outbreaks. While a number of studies have investigated Salmonella shedding and host responses to infection, they have been conducted over a short time period. The present study sought to characterise bacterial shedding and host responses to infection in hens infected with only Salmonella Typhimurium or co-infected with both Salmonella Typhimurium and Salmonella Mbandaka over a 16 week period. Salmonella shedding was quantified using the most probable number and qPCR methods and was highly variable over the course of the experiment. On day 1, fecal corticosterone metabolites in birds infected with Salmonella Typhimurium (674.2 ± 109.3 pg/mg) were significantly higher than control (238.0 ± 12.62 pg/mg) or co-infected (175.4 ± 8.58 pg/mg) birds. The onset of lay occurred between weeks 6-8 post-infection (pi) and Fecal corticosterone metabolite (FCM) concentrations increased in both control and co-infected birds. Antibody responses to infection were monitored in both serum and yolk samples. Salmonella Typhimurium specific antibody was lower in co-infected animals than monoinfected animals. Bacterial loads in internal organs were characterised to determine persistence. Spleen, liver and caecal tonsils were positive for bacteria in both groups, indicating that Salmonella was not cleared from the birds and internal organ colonization could serve as a reservoir for continued bacterial shedding.Pardeep Sharma, Vivek V. Pande, Talia S. Moyle, Andrea R. McWhorter and Kapil K. Chousalka

    Hummingbirds arrest their kidneys at night: diel variation in glomerular filtration rate in Selasphorus platycercus

    Get PDF
    © The Company of Biologists Ltd 2004Small nectarivorous vertebrates face a quandary. When feeding, they must eliminate prodigious quantities of water; however, when they are not feeding, they are susceptible to dehydration. We examined the role of the kidney in the resolution of this osmoregulatory dilemma. Broad-tailed hummingbirds (Selasphorus platycercus) displayed diurnal variation in glomerular filtration rate (GFR). During the morning, midday and evening, GFRs were 0.9±0.6, 1.8±0.4 and 2.3±0.5 ml h–1, respectively. At midday, GFR increased linearly with increased water intake. During the evening, hummingbirds decreased renal fractional water reabsorption linearly with increased water intake. Broad-tailed hummingbirds appeared to cease GFR at night (–0.1±0.2 ml h–1) and decreased GFR in response to short-term (~1.5 h) water deprivation. GFR seems to be very responsive to water deprivation in hummingbirds. Although hummingbirds and other nectarivorous birds can consume astounding amounts of water, a phylogenetically explicit allometric analysis revealed that their diurnal GFRs are not different from the expectation based on body mass.Bradley Hartman Bakken, Todd J. McWhorter, Ella Tsahar and Carlos Martínez del Ri

    Mistletoebirds and xylose: Australian frugivores differ in their handling of dietary sugars

    Get PDF
    Carbohydrate-rich mistletoe fruits are consumed by a wide range of avian species. Small birds absorb a large portion of water-soluble nutrients, such as glucose, via the paracellular pathway. d-xylose, a pentose monosaccharide, is abundant in some nectars and mistletoe fruits consumed by birds, and it has been suggested that it is most likely absorbed via the paracellular pathway in birds. We measured apparent assimilation efficiency (AE*) and bioavailability (f) for d-xylose and d- and l-glucose in three frugivorous Australian bird species. Mistletoebirds, silvereyes, and singing honeyeaters showed significantly lower AE* for d-xylose than for d-glucose. Across two diet sugar concentrations, silvereyes and singing honeyeaters significantly increased(f)of both l-glucose (a metabolically inert isomer of d-glucose commonly used to quantify paracellular uptake) and d-xylose on the more concentrated diet, probably because of increased gut processing time. By contrast, mistletoebirds (mistletoe fruit specialists) did not vary (f) of either sugar with diet concentration. Mistletoebirds also showed higher (f) for d-xylose than l-glucose and eliminated d-xylose more slowly than silvereyes and singing honeyeaters, demonstrating differences in the handling of dietary xylose between these species. Our results suggest that d-xylose may be absorbed by both mediated and nonmediated mechanisms in mistletoebirds.Kathryn R. Napier, Patricia A. Fleming, Todd J. McWhorte

    An Archaeological Survey of a Pipeline Right-of-way along Loop 1604 from IH-37 to the San Antonio River, Southeast Bexar County, Texas

    Get PDF
    In February 1997, the Center for Archaeological Research (CAR) of The University of Texas at San Antonio was contracted by the San Antonio Water Systems (SAWS) to conduct an intensive archaeological survey and geomorphological study along a proposed 5 .5-km water main right-of-way, from the junction of ill -3 7 and Loop 1604 to the San Antonio River in southeast Bexar County. Upon completion of a 1 DO-percent pedestrian survey, 10 backhoe trenches, and 152 shovel tests, CAR concluded that no significant cultural remains would be impacted by excavations for the proposed water main, and recommends that no further archaeological work is required prior to construction.
    • …
    corecore