686 research outputs found
Reduced search space multiple shift maximum element sequential matrix diagonalisation algorithm
The Multiple Shift Maximum Element Sequential Matrix Diagonalisation (MSME-SMD) algorithm is a powerful but costly method for performing approximate polynomial eigenvalue decomposition (PEVD) for space-time covariance-type matrices encountered in e.g. broadband array processing. This paper discusses a newly developed search method that restricts the order growth within the MSME-SMD algorithm. In addition to enhanced control of the polynomial degree of the paraunitary and parahermitian factors in this decomposition, the new search method is also computationally less demanding as fewer elements are searched compared to the original while the excellent diagonalisation of MSME-SMD is maintained
Impact of source model matrix conditioning on iterative PEVD algorithms
Polynomial parahermitian matrices can accurately and elegantly capture the space-time covariance in broadband array problems. To factorise such matrices, a number of polynomial EVD (PEVD) algorithms have been suggested. At every step, these algorithms move various amounts of off-diagonal energy onto the diagonal, to eventually reach an approximate diagonalisation. In practical experiments, we have found that the relative performance of these algorithms depends quite significantly on the type of parahermitian matrix that is to be factorised. This paper aims to explore this performance space, and to provide some insight into the characteristics of PEVD algorithms
The Murchison Widefield Array Transients Survey (MWATS). A search for low frequency variability in a bright Southern hemisphere sample
We report on a search for low-frequency radio variability in 944 bright (>
4Jy at 154 MHz) unresolved, extragalactic radio sources monitored monthly for
several years with the Murchison Widefield Array. In the majority of sources we
find very low levels of variability with typical modulation indices < 5%. We
detect 15 candidate low frequency variables that show significant long term
variability (>2.8 years) with time-averaged modulation indices M = 3.1 - 7.1%.
With 7/15 of these variable sources having peaked spectral energy
distributions, and only 5.7% of the overall sample having peaked spectra, we
find an increase in the prevalence of variability in this spectral class. We
conclude that the variability seen in this survey is most probably a
consequence of refractive interstellar scintillation and that these objects
must have the majority of their flux density contained within angular diameters
less than 50 milli-arcsec (which we support with multi-wavelength data). At 154
MHz we demonstrate that interstellar scintillation time-scales become long
(~decades) and have low modulation indices, whilst synchrotron driven
variability can only produce dynamic changes on time-scales of hundreds of
years, with flux density changes less than one milli-jansky (without
relativistic boosting). From this work we infer that the low frequency
extra-galactic southern sky, as seen by SKA-Low, will be non-variable on
time-scales shorter than one year.Comment: 19 pages, 11 figure
Dynamics of Fluid Vesicles in Oscillatory Shear Flow
The dynamics of fluid vesicles in oscillatory shear flow was studied using
differential equations of two variables: the Taylor deformation parameter and
inclination angle . In a steady shear flow with a low viscosity
of internal fluid, the vesicles exhibit steady tank-treading
motion with a constant inclination angle . In the oscillatory flow
with a low shear frequency, oscillates between or
around for zero or finite mean shear rate ,
respectively. As shear frequency increases, the vesicle
oscillation becomes delayed with respect to the shear oscillation, and the
oscillation amplitude decreases. At high with , another limit-cycle oscillation between and
is found to appear. In the steady flow, periodically rotates
(tumbling) at high , and and the vesicle shape
oscillate (swinging) at middle and high shear rate. In the
oscillatory flow, the coexistence of two or more limit-cycle oscillations can
occur for low in these phases. For the vesicle with a fixed shape,
the angle rotates back to the original position after an oscillation
period. However, it is found that a preferred angle can be induced by small
thermal fluctuations.Comment: 11 pages, 13 figure
Interferometric imaging with the 32 element Murchison Wide-field Array
The Murchison Wide-field Array (MWA) is a low frequency radio telescope,
currently under construction, intended to search for the spectral signature of
the epoch of re-ionisation (EOR) and to probe the structure of the solar
corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles
grouped into 512 tiles, and be capable of imaging the sky south of 40 degree
declination, from 80 MHz to 300 MHz with an instantaneous field of view that is
tens of degrees wide and a resolution of a few arcminutes. A 32-station
prototype of the MWA has been recently commissioned and a set of observations
taken that exercise the whole acquisition and processing pipeline. We present
Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees
wide centered on Pictoris A. These images demonstrate the capacity and
stability of a real-time calibration and imaging technique employing the
weighted addition of warped snapshots to counter extreme wide field imaging
distortions.Comment: Accepted for publication in PASP. This is the draft before journal
typesetting corrections and proofs so does contain formatting and journal
style errors, also has with lower quality figures for space requirement
Formation and Primary Heating of The Solar Corona - Theory and Simulation
An integrated Magneto-Fluid model, that accords full treatment to the
Velocity fields associated with the directed plasma motion, is developed to
investigate the dynamics of coronal structures. It is suggested that the
interaction of the fluid and the magnetic aspects of plasma may be a crucial
element in creating so much diversity in the solar atmosphere. It is shown that
the structures which comprise the solar corona can be created by particle
(plasma) flows observed near the Sun's surface - the primary heating of these
structures is caused by the viscous dissipation of the flow kinetic energy.Comment: 46 pages including 7 pages of figures, Submitted to Phys.Plasma
A new layout optimization technique for interferometric arrays, applied to the MWA
Antenna layout is an important design consideration for radio interferometers
because it determines the quality of the snapshot point spread function (PSF,
or array beam). This is particularly true for experiments targeting the 21 cm
Epoch of Reionization signal as the quality of the foreground subtraction
depends directly on the spatial dynamic range and thus the smoothness of the
baseline distribution. Nearly all sites have constraints on where antennas can
be placed---even at the remote Australian location of the MWA (Murchison
Widefield Array) there are rock outcrops, flood zones, heritages areas,
emergency runways and trees. These exclusion areas can introduce spatial
structure into the baseline distribution that enhance the PSF sidelobes and
reduce the angular dynamic range. In this paper we present a new method of
constrained antenna placement that reduces the spatial structure in the
baseline distribution. This method not only outperforms random placement
algorithms that avoid exclusion zones, but surprisingly outperforms random
placement algorithms without constraints to provide what we believe are the
smoothest constrained baseline distributions developed to date. We use our new
algorithm to determine antenna placements for the originally planned MWA, and
present the antenna locations, baseline distribution, and snapshot PSF for this
array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA
The Murchison Widefield Array
It is shown that the excellent Murchison Radio-astronomy Observatory site
allows the Murchison Widefield Array to employ a simple RFI blanking scheme and
still calibrate visibilities and form images in the FM radio band. The
techniques described are running autonomously in our calibration and imaging
software, which is currently being used to process an FM-band survey of the
entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016].
6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI
Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
- …