202 research outputs found

    Science-based restoration monitoring of coastal habitats, Volume Two: Tools for monitoring coastal habitats

    Get PDF
    Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts

    Science-based restoration monitoring of coastal habitats, Volume One: A framework for monitoring plans under the Estuaries and Clean Waters Act of 2000 (Public Law 160-457)

    Get PDF
    Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages

    Groundwater Control in Tunneling: Executive Summary

    Get PDF
    DOT-FH-11-9516This Executive Summary briefly describes a three-volume report on Groundwater Control During Tunneling and in Completed Tunnels

    The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFÎşB Feedback

    Get PDF
    Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFÎşB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease

    Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine

    Get PDF
    Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques

    Overweight, physical activity, tobacco and alcohol consumption in a cross-sectional random sample of German adults

    Get PDF
    BACKGROUND: There is a current paucity of data on the health behaviour of non-selected populations in Central Europe. Data on health behaviour were collected as part of the EMIL study which investigated the prevalence of infection with Echinococcus multilocularis and other medical conditions in an urban German population. METHODS: Participating in the present study were 2,187 adults (1,138 females [52.0%]; 1,049 males [48.0%], age: 18–65 years) taken from a sample of 4,000 persons randomly chosen from an urban population. Data on health behaviour like physical activity, tobacco and alcohol consumption were obtained by means of a questionnaire, documentation of anthropometric data, abdominal ultrasound and blood specimens for assessment of chemical parameters. RESULTS: The overall rate of participation was 62.8%. Of these, 50.3% of the adults were overweight or obese. The proportion of active tobacco smokers stood at 30.1%. Of those surveyed 38.9% did not participate in any physical activity. Less than 2 hours of leisure time physical activity per week was associated with female sex, higher BMI (Body Mass Index), smoking and no alcohol consumption. Participants consumed on average 12 grams of alcohol per day. Total cholesterol was in 62.0% (>5.2 mmol/l) and triglycerides were elevated in 20.5% (≥ 2.3 mmol/l) of subjects studied. Hepatic steatosis was identified in 27.4% of subjects and showed an association with male sex, higher BMI, higher age, higher total blood cholesterol, lower HDL, higher triglycerides and higher ALT. CONCLUSION: This random sample of German urban adults was characterised by a high prevalence of overweight and obesity. This and the pattern of alcohol consumption, smoking and physical activity can be considered to put this group at high risk for associated morbidity and underscore the urgent need for preventive measures aimed at reducing the significantly increased health risk

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Evaluation of lifestyle interventions to treat elevated cardiometabolic risk in primary care (E-LITE): a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efficacy research has shown that intensive individual lifestyle intervention lowers the risk for developing type 2 diabetes mellitus and the metabolic syndrome. Translational research is needed to test real-world models of lifestyle interventions in primary care settings.</p> <p>Design</p> <p>E-LITE is a three-arm randomized controlled clinical trial aimed at testing the feasibility and potential effectiveness of two lifestyle interventions: information technology-assisted self-management, either alone or in combination with care management by a dietitian and exercise counselor, in comparison to usual care. Overweight or obese adults with pre-diabetes and/or metabolic syndrome (n = 240) recruited from a community-based primary care clinic are randomly assigned to one of three treatment conditions. Treatment will last 15 months and involves a three-month intensive treatment phase followed by a 12-month maintenance phase. Follow-up assessment occurs at three, six, and 15 months. The primary outcome is change in body mass index. The target sample size will provide 80% power for detecting a net difference of half a standard deviation in body mass index at 15 months between either of the self-management or care management interventions and usual care at a two-sided α level of 0.05, assuming up to a 20% rate of loss to 15-month follow-up.</p> <p>Secondary outcomes include glycemic control, additional cardiovascular risk factors, and health-related quality of life. Potential mediators (e.g., treatment adherence, caloric intake, physical activity level) and moderators (e.g., age, gender, race/ethnicity, baseline mental status) of the intervention's effect on weight change also will be examined.</p> <p>Discussion</p> <p>This study will provide objective evidence on the extent of reductions in body mass index and related cardiometabolic risk factors from two lifestyle intervention programs of varying intensity that could be implemented as part of routine health care.</p> <p>Trial registration</p> <p>NCT00842426</p
    • …
    corecore