134 research outputs found

    Sexual reproduction is the null hypothesis for life cycles of rust fungi

    Get PDF
    Sexual reproduction, mutation, and reassortment of nuclei increase genotypic diversity in rust fungi. Sexual reproduction is inherent to rust fungi, coupled with their coevolved plant hosts in native pathosystems. Rust fungi are hypothesised to exchange nuclei by somatic hybridisation with an outcome of increased genotypic diversity, independent of sexual reproduction. We provide criteria to demonstrate whether somatic exchange has occurred, including knowledge of parental haplotypes and rejection of fertilisation in normal rust life cycles

    The life cycle and field epidemiology of Uromycladium acaciae (Pucciniales) on Acacia mearnsii in South Africa

    Get PDF
    Uromycladium acaciae has damaged plantations of Acacia mearnsii in southern Africa since 2013. Uredinia of a species of Uromycladium have been known on A. mearnsii in South Africa since the 1980s. However, the recent damage is associated with telia and spermogonia. Uredinia and telia were previously treated as conspecific with a phylogenetic species concept. However, uredinia did not form after previous artificial inoculation experiments with teliospores. Controlled studies identified the optimum conditions for basidiospore infection, but the optimum conditions for sporulation and dispersal have not been identified. To investigate the life cycle and field epidemiology of Uromycladium on A. mearnsii, spores were trapped weekly and development of disease symptoms and plant phenology were monitored monthly at three plantations. Telia and spermogonia developed independently from uredinia, and nucleotide polymorphisms between rDNA of uredinia and telia were fixed based on high throughput sequencing and PCRs. All three weather variables measured had a significant effect on teliospore abundance at two of the three sites. Teliospore abundance was greatest during trapping periods when mean relative humidity was high, mean rainfall was 4–5 mm dayβˆ’1 and mean temperature was 15–16Β°C. Teliospore counts peaked at the end of summer, potentially the result of epidemic build-up. Results support the hypothesis that despite sharing a most recent common ancestor, uredinia on A. mearnsii in southern Africa are independent to the life cycle of the telial rust, which likely constitutes a new introduction. Furthermore, teliospores of U. acaciae disperse under wet conditions, and the wet season between October and March is the optimal period for wattle rust development.Members of the Tree Protection Co-operative Programme (TPCP), the Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB) and the Wattle Rust Steering Committee funded by the Sector Innovation Fund (SIF) of the Department of Science and Technology (DST). The Genomics Research Institute of the University of Pretoria provided funding for high-throughput sequencing of Uromycladium acaciae. Stuart Fraser acknowledges Postdoctoral Fellowship funding from the University of Pretoria and New Zealand Ministry for Business Innovation and Employment through the Science Strategic Investment Fund.http://wileyonlinelibrary.com/journal/aabhj2022Forestry and Agricultural Biotechnology Institute (FABI)Plant Production and Soil Scienc

    Child and parental perspectives on communication and decision-making in pediatric chronic kidney disease: a focus group study

    Get PDF
    Background & Objectives: Effective communication and shared decision making improve quality of care and patient outcomes but can be particularly challenging in pediatric chronic disease because children depend on their parents and clinicians to manage complex health care and developmental needs. We aimed to describe the perspectives of children with chronic kidney disease (CKD) and their parents with regard to communication and decision making. / Study Design: Qualitative study. / Setting & Participants: Children with CKD (n = 34) and parents (n = 62) from 6 centers across 6 cities in Australia, Canada, and the United States participated in 16 focus groups. / Analytical Approach: Transcripts were analyzed thematically. / Results: We identified 4 themes: (1) disempowered by knowledge imbalance (unprepared and ill-informed, suspicion of censorship, and inadequacy as technicians), (2) recognizing own expertise (intuition and instinct unique to parental bond, emerging wisdom and confidence, identifying opportunities for control and inclusion, and empowering participation in children), (3) striving to assert own priorities (negotiating broader life impacts, choosing to defer decisional burden, overprotected and overruled, and struggling to voice own preferences), and (4) managing child’s involvement (respecting child’s expertise, attributing β€œrisky” behaviors to rebellion, and protecting children from illness burden). / Limitations: Only English-speaking participants were recruited, which may limit the transferability of the findings. We collected data from child and parent perspectives; however, clinician perspectives may provide further understanding of the difficulties of communication and decision making in pediatrics. / Conclusions: Parents value partnership with clinicians and consider long-term and quality-of-life implications of their child’s illness. Children with CKD want more involvement in treatment decision making but are limited by vulnerability, fear, and uncertainty. There is a need to support the child to better enable him or her to become a partner in decision making and prepare him or her for adulthood. Collaborative and informed decision making that addresses the priorities and concerns of both children and parents is needed

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    FTO Is Expressed in Neurones throughout the Brain and Its Expression Is Unaltered by Fasting

    Get PDF
    Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16–48 hour) fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour) fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus

    Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra

    Get PDF
    BACKGROUND: Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods. METHODS: MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total nβ€Š=β€Š264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster. PRINCIPAL FINDINGS: Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score β‰₯2.0) and genus (score β‰₯1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of β‰₯2.0 and 160/167 (96%) with scores of β‰₯1.70; amongst Candida spp. (nβ€Š=β€Š148), correct species assignment at scores of β‰₯2.0, and β‰₯1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of β‰₯1.90 and β‰₯1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.70-1.90 provided correct species assignment despite being identified to "genus-level". MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (nβ€Š=β€Š1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results. CONCLUSIONS: MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility

    Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome

    Get PDF
    Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNAval promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes
    • …
    corecore