690 research outputs found

    Low Temperature Combustion Optimization and Cycle-by-Cycle Variability Through Injection Optimization and Gas-to-Liquid Fuel-Blend Ratio

    Get PDF
    The advent of common rail technology alongside powerful control systems capable of delivering multiple accurate fuel charges during a single engine cycle has revolutionized the level of control possible in diesel combustion. This technology has opened a new path enabling low-temperature combustion (LTC) to become a viable combustion strategy. The aim of the research work presented within this paper is the understanding of how various engine parameters of LTC optimize the combustion both in terms of emissions and in terms of fuel efficiency. The work continues with an investigation of in-cylinder pressure and IMEP cycle-by-cycle variation. Attention will be given to how repeatability changes throughout the combustion cycle, identifying which parts within the cycle are least likely to follow the mean trend and why. Experiments were conducted on a single-cylinder 510cc boosted diesel engine. LTC was affected over varying rail pressure and combustion phasing. Single and split injection regimes of varying dwell-times were investigated. All injection conditions were phased across several crank-angles to demonstrate the interaction between emissions and efficiency. These tests were then repeated with blends of 30% and 50% gas-to-liquid (GTL)-diesel blends in order to determine whether there is any change in the trends of repeatability and variance with increasing GTL blend ratio. The experiments were evaluated in terms of emissions, fuel efficiency, and cyclic behavior. Specific attention was given to how the NO x -PM trade-off changes through increased injection complexity and increasing GTL blend ratio. The cyclic behavior was analyzed in terms of in-cylinder pressure standard deviation. This gives a behavior profile of the repeatability of in-cylinder pressure in comparison to the mean. Each condition was then compared to the behavior of equivalent injection conditions in conventional diesel combustion. Short-dwell split injection was shown to be beneficial for LTC, while NO x was shown to be reduced by the substitution of GTL in the fuel. In-cylinder pressure cyclic behavior was also shown to be comparable or superior to conventional combustion in every case examined. GTL improved this further, but not in proportion to its blend ratio

    The purpose of mess in action research: building rigour though a messy turn

    Get PDF
    Mess and rigour might appear to be strange bedfellows. This paper argues that the purpose of mess is to facilitate a turn towards new constructions of knowing that lead to transformation in practice (an action turn). Engaging in action research - research that can disturb both individual and communally held notions of knowledge for practice - will be messy. Investigations into the 'messy area', the interface between the known and the nearly known, between knowledge in use and tacit knowledge as yet to be useful, reveal the 'messy area' as a vital element for seeing, disrupting, analysing, learning, knowing and changing. It is the place where long-held views shaped by professional knowledge, practical judgement, experience and intuition are seen through other lenses. It is here that reframing takes place and new knowing, which has both theoretical and practical significance, arises: a 'messy turn' takes place

    Chromium sequencing: The doors open for genomics of obligate plant pathogens

    Get PDF
    It is challenging to sequence and assemble genomes of obligate plant pathogens and microorganisms because of limited amounts of DNA, comparatively large genomes and high numbers of repeat regions. We sequenced the 1.2 gigabase genome of an obligate rust fungus, Austropuccinia psidii, the cause of rust on Myrtaceae, with a Chromium 10X library. This technology has mostly been applied for single-cell sequencing in immunological studies of mammals. We compared scaffolds of a genome assembled from the Chromium library with one assembled from combined paired-end and mate-pair libraries, sequenced with Illumina HiSeq. Chromium 10X provided a superior assembly, in terms of number of scaffolds, N50 and number of genes recovered. It required less DNA than other methods and was sequenced and assembled at a lower cost. Chromium sequencing could provide a solution to sequence and assemble genomes of obligate plant pathogens where the amount of available DNA is a limiting factor. © 2018 Future Science. All rights reserved

    Action research in physical education: focusing beyond myself through cooperative learning

    Get PDF
    This paper reports on the pedagogical changes that I experienced as a teacher engaged in an action research project in which I designed and implemented an indirect, developmentally appropriate and child‐centred approach to my teaching. There have been repeated calls to expunge – or at least rationalise – the use of traditional, teacher‐led practice in physical education. Yet despite the advocacy of many leading academics there is little evidence that such a change of approach is occurring. In my role as teacher‐as‐researcher I sought to implement a new pedagogical approach, in the form of cooperative learning, and bring about a positive change in the form of enhanced pupil learning. Data collection included a reflective journal, post‐teaching reflective analysis, pupil questionnaires, student interviews, document analysis, and non‐participant observations. The research team analysed the data using inductive analysis and constant comparison. Six themes emerged from the data: teaching and learning, reflections on cooperation, performance, time, teacher change, and social interaction. The paper argues that cooperative learning allowed me to place social and academic learning goals on an even footing, which in turn placed a focus on pupils’ understanding and improvement of skills in athletics alongside their interpersonal development

    Host jumps shaped the diversity of extant rust fungi (Pucciniales)

    Get PDF
    * The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. * Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. * Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. * Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies

    Sheep Updates 2006 - part 3

    Get PDF
    This session covers six papers from different authors: GRAZING 1. Making better use of clover, Karen Venning and Andrew Thompson, Department of Primary Industries, Victoria 2. Grazing systems demonstration to optimise pasture utilisation and stocking rate, Mike Hyder, Sue-Ellen Shaw, Kelly Hill and Ron McTaggart, Department of Agriculture and Food Western Australia. 3. Know your audience to increase their rate of practice change - Lifetime Wool as an example, Gus Rose, Department of Agriculture and Food Western Australia, Carolyn Kabore, Kazresearch REPRODUCTION 4. Lifetime Wool - Ewe Management Guidlines, Mandy Curnow, Department of Agriculture and Food Western Australia 5. Achieving the best reproductive performance from your hoggets, Kenyon PR, Morris ST, West DM, Perkins NR, Pinchbeck GL., Institute of Veterinary, Animal and Biomedical Sciences, Massey University, New Zealand. 6. Lifetime Wool: Twin futures, Dr Ralph Behrendt, Department of Primary Industries, Victori
    • 

    corecore