16 research outputs found

    Hip and Groin Pain in the Professional Athlete

    Get PDF
    AbstractHip and groin pain is a common condition in professional athletes and may result from an acute injury or from chronic, repetitive trauma. It is responsible for significant morbidity, which leads to time away from training and competition, and may result in a career-ending injury. The anatomic and biomechanical causes for hip and groin injuries are among the most complex and controversial in the musculoskeletal system. This makes clinical differentiation and subsequent management difficult because of the considerable overlap of symptoms and signs. This review article will evaluate several pathologic conditions of the hip and groin in athletes, divided into acute (secondary to single event) and chronic (secondary to altered biomechanical load or repetitive microtrauma) injuries, with an emphasis on imaging in the diagnosis of these injuries. Appropriate use of imaging along with clinical findings can allow accurate diagnosis and subsequent appropriate management of these patients to ultimately allow return to athletic activity

    Role of radiologic imaging in irritable bowel syndrome: evidence-based review

    Get PDF
    Purpose: To critically evaluate the current literature in an effort to establish the current role of radiologic imaging (computed tomography, magnetic resonance imaging, ultrasonography [US], fluoroscopy, conventional film radiography) in irritable bowel syndrome (IBS). Materials and Methods: The term “irritable bowel syndrome” was used to search Clinical Evidence, UpToDate, Cochrane Library, TRIP, and National Institute for Health and Clinical Excellence databases and the American College of Physicians Journal Club and Evidence-Based Medicine online. PubMed was searched by using medical subject headings (“irritable bowel syndrome;” “colonic diseases, functional;” “diagnosis;” “colonography;” “computed tomographic (CT)”) and the dates January 1, 1985 to July 1, 2010. Appraisal was independently performed by two reviewers who followed the Oxford Centre for Evidence Based Medicine practice criteria. Results: No systematic review (SR) specifically examined radiologic imaging in IBS; however, in the secondary literature, five relevant SRs or guidelines partially addressed this topic. A PubMed search identified 1451 articles, 111 of which at least partially addressed radiologic imaging. Of these, seven valid articles (two SRs and five primary research articles) were identified. The five primary research articles examined either colonic investigations (colonoscopy and barium enema examination) (n = 5) or US (n = 2) or both (n = 2). Structural disease found infrequently in patients with IBS-type symptoms included diverticulosis, colorectal cancer, celiac disease, inflammatory bowel disease, and ovarian cancer. The incidence of structural disease in patients with concerning symptoms was low. Conclusion: Although widely used, there is a surprising paucity of evidence guiding radiologic imaging in IBS. Radiologic imaging may not be required in patients with IBS without potentially concerning symptoms but should be considered where such symptoms exist, and choice of imaging study should be influenced by predominant symptoms. Definitive recommendations must await further research

    Evaluation of the Efficacy and Safety of Percutaneous Biopsy of Lung

    No full text

    Role of radiologic imaging in irritable bowel syndrome: evidence-based review

    No full text
    Purpose: To critically evaluate the current literature in an effort to establish the current role of radiologic imaging (computed tomography, magnetic resonance imaging, ultrasonography [US], fluoroscopy, conventional film radiography) in irritable bowel syndrome (IBS). Materials and Methods: The term “irritable bowel syndrome” was used to search Clinical Evidence, UpToDate, Cochrane Library, TRIP, and National Institute for Health and Clinical Excellence databases and the American College of Physicians Journal Club and Evidence-Based Medicine online. PubMed was searched by using medical subject headings (“irritable bowel syndrome;” “colonic diseases, functional;” “diagnosis;” “colonography;” “computed tomographic (CT)”) and the dates January 1, 1985 to July 1, 2010. Appraisal was independently performed by two reviewers who followed the Oxford Centre for Evidence Based Medicine practice criteria. Results: No systematic review (SR) specifically examined radiologic imaging in IBS; however, in the secondary literature, five relevant SRs or guidelines partially addressed this topic. A PubMed search identified 1451 articles, 111 of which at least partially addressed radiologic imaging. Of these, seven valid articles (two SRs and five primary research articles) were identified. The five primary research articles examined either colonic investigations (colonoscopy and barium enema examination) (n = 5) or US (n = 2) or both (n = 2). Structural disease found infrequently in patients with IBS-type symptoms included diverticulosis, colorectal cancer, celiac disease, inflammatory bowel disease, and ovarian cancer. The incidence of structural disease in patients with concerning symptoms was low. Conclusion: Although widely used, there is a surprising paucity of evidence guiding radiologic imaging in IBS. Radiologic imaging may not be required in patients with IBS without potentially concerning symptoms but should be considered where such symptoms exist, and choice of imaging study should be influenced by predominant symptoms. Definitive recommendations must await further research

    A Simple Technique to Improve Microcrystals Using Gel Exclusion of Nucleation Inducing Elements

    No full text
    A technique is described for generating large well diffracting crystals from conditions that yield microcrystals. Crystallization using this technique is both rapid (crystals appear in <1 h) and robust (48 out of 48 co-crystallized with a fragment library, compared with 26 out of 48 using conventional hanging drop). Agarose gel is used to exclude nucleation inducing elements from the remaining crystallization cocktail. The chemicals in the crystallization cocktail are partitioned into high concentration components (presumed to induce aggregation by reducing water activity) and low concentration nucleation agents (presumed to induce nucleation through direct interaction). The nucleation agents are then combined with 2% agarose gel and deposited on the crystallization shelf of a conventional vapor diffusion plate. The remaining components are mixed with the protein and placed in contact with the agarose drop. This technique yielded well diffracting crystals of lysozyme, cubic insulin, proteinase k, and ferritin (ferritin crystals diffracted to 1.43 Å). The crystals grew rapidly, reaching large size in less than one hour (maximum size was achieved in 1⁻12 h). This technique is not suitable for poorly expressing proteins because small protein volumes diffuse out of the agarose gel too quickly. However, it is a useful technique for situations where crystals must grow rapidly (such as educational applications and preparation of beamline test specimens) and in situations where crystals must grow robustly (such as co-crystallization with a fragment library)
    corecore