123 research outputs found

    Reducing risk in basin scale sequestration: A Bayesian model selection framework for improving detection

    Get PDF
    Geological CO[subscript 2] sequestration is a key technology for mitigating atmospheric greenhouse gas concentrations while providing low carbon energy. Deployment of sequestration at scales necessary for a material contribution to greenhouse gas mitigation poses a number of challenges not encountered in current operations. At the basin scale, injection sites will not be as well characterized as current operations. Predictions of system response to this magnitude of injection are expected to have greater uncertainty and risk. Through an integrated, model based design and assimilation, monitoring provides a platform for mitigating the associated risks. Because footprints of basin scale injection projects are expected to be very large, the high resolution monitoring programs in existing projects are not economically feasible for monitoring at large scales. The acceptable levels of resolution and risk are dependent on the footprint of the network and the monitoring technique employed, which are in turn, constrained by cost of deployment and regulatory requirements. Network design must make an implicit assumption on the size of the leak that is able to be measured. Leak detection at the surface is complicated by the many natural and anthropogenic sources of CO[subscript 2] that can mask a leak or result in the incorrect assessment of whether a leak has occurred. In this paper, we introduce a Bayesian framework for decision support in discriminating between CO[subscript 2] detected from a leak and CO[subscript 2] measured from background fluctuations. For small leakage concentrations, the signal cannot be distinguished from background fluctuations. When complementary observations are jointly considered, the ability to discriminate between a leakage and background concentrations improves, and the number of samples required for confident detection decreases. Incorporation of Bayesian decision support tools into monitoring programs will assist in reducing risk in geological sequestration in a cost effective manner by providing a framework for efficient integration of complementary observations and enhancing the information content of the network.Luce Foundation. Clare Boothe Luce Program (Post-Doctoral Fellowship

    Antibiotics Alter Pocillopora Coral-Symbiodiniaceae-Bacteria Interactions and Cause Microbial Dysbiosis During Heat Stress

    Get PDF
    Symbioses between eukaryotes and their associated microbial communities are fundamental processes that affect organisms’ ecology and evolution. A unique example of this is reef-building corals that maintain symbiotic associations with dinoflagellate algae (Symbiodiniaceae) and bacteria that affect coral health through various mechanisms. However, little is understood about how coral-associated bacteria communities affect holobiont heat tolerance. In this study, we investigated these interactions in four Pocillopora coral colonies belonging to three cryptic species by subjecting fragments to treatments with antibiotics intended to suppress the normal bacteria community, followed by acute heat stress. Separate treatments with only antibiotics or heat stress were conducted to compare the effects of individual stressors on holobiont transcriptome responses and microbiome shifts. Across all Pocillopora species examined, combined antibiotics and heat stress treatment significantly altered coral-associated bacteria communities and caused major changes in both coral and Cladocopium algal symbiont gene expression. Individually, heat stress impaired Pocillopora protein translation and activated DNA repair processes, while antibiotics treatments caused downregulation of Pocillopora amino acid and inorganic ion transport and metabolism genes and Cladocopium photosynthesis genes. Combined antibiotics-heat stress treatments caused synergistic effects on Pocillopora and Cladocopium gene expression including enhanced expression of oxidative stress response genes, programed cell death pathways and proteolytic enzymes that indicate an exacerbated response to heat stress following bacteria community suppression. Collectively, these results provide further evidence that corals and their Symbiodiniaceae and bacteria communities engage in highly coordinated metabolic interactions that are crucial for coral holobiont health, homeostasis, and heat tolerance

    Some aspects of the Liouville equation in mathematical physics and statistical mechanics

    Full text link
    This paper presents some mathematical aspects of Classical Liouville theorem and we have noted some mathematical theorems about its initial value problem. Furthermore, we have implied on the formal frame work of Stochastic Liouville equation (SLE)

    Nanoparticles for Applications in Cellular Imaging

    Get PDF
    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore