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Abstract 

Geological CO2 sequestration is a key technology for mitigating atmospheric greenhouse gas concentrations while providing 
low carbon energy.  Deployment of sequestration at scales necessary for a material contribution to greenhouse gas mitigation 
poses a number of challenges not encountered in current operations.  At the basin scale, injection sites will not be as well 
characterized as current operations.  Predictions of system response to this magnitude of injection are expected to have greater 
uncertainty and risk.  Through an integrated, model based design and assimilation, monitoring provides a platform for mitigating 
the associated risks.  Because footprints of basin scale injection projects are expected to be very large, the high resolution 
monitoring programs in existing projects are not economically feasible for monitoring at large scales.  The acceptable levels of 
resolution and risk are dependent on the footprint of the network and the monitoring technique employed, which are in turn, 
constrained by cost of deployment and regulatory requirements. 

Network design must make an implicit assumption on the size of the leak that is able to be measured.  Leak detection at the 
surface is complicated by the many natural and anthropogenic sources of CO2 that can mask a leak or result in the incorrect 
assessment of whether a leak has occurred.  In this paper, we introduce a Bayesian framework for decision support in 
discriminating between CO2 detected from a leak and CO2 measured from background fluctuations.  For small leakage 
concentrations, the signal cannot be distinguished from background fluctuations.  When complementary observations are jointly 
considered, the ability to discriminate between a leakage and background concentrations improves, and the number of samples 
required for confident detection decreases.  Incorporation of Bayesian decision support tools into monitoring programs will assist 
in reducing risk in geological sequestration in a cost effective manner by providing a framework for efficient integration of 
complementary observations and enhancing the information content of the network. 
 
© 2010 Elsevier Ltd. All rights reserved 
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1. Introduction 

Rising concentrations of atmospheric CO2, largely attributed to the combustion of fossil fuels, are a concern 
because of their potential impact on global climate change.  CO2 sequestration is an attractive option for mitigating 
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climate change because it can be deployed immediately and at scale, with little disruption to existing energy 
production and distribution infrastructure.  For geological sequestration to make a meaningful contribution in 
reducing CO2 concentrations, injection volumes must be on the order of Gigatonnes per year, corresponding to a 
hundred fold increase in the scale of existing injection operations.  Increasing the magnitude of future operations far 
beyond our current knowledge base raises concerns of safety and security of geological sequestration.   

Monitoring and verification are key components in managing risk.  When models representing the physics of 
sequestration are used to design monitoring programs, an understanding of the uncertainty and potential systems 
interactions is gained and an appropriate mitigation plan can be formed.  Observed data provides information about 
the system response, which can be used to calibrate models for more accurate prediction of future behavior.  
Comparison of observed data against simulation models provide confidence that the uncertainty in the system is 
characterized to a reasonable degree, and that the physics governing complex, nonlinear processes of sequestration 
are well understood.  Assimilation of monitoring data with dynamical models allow for detection of anomalous 
behavior, serving as an early warning system and providing a mechanism to signal the need for intervention.  In the 
event that a leak does occur, monitoring and verification provide a means for remediation through the ability to 
locate a leak.   

A number of researchers have explored aspects of monitoring design [1-4].  However, issues of detection limits, 
limits of monitoring methods and what are acceptable rates of leakage have not been thoroughly explored.  
Moreover, there is no clear guideline on what is the acceptable leakage rate to safeguard the public and protect the 
environment.  Detectable concentrations and the sensitivity of a monitoring network are functions of the monitoring 
technique, sensor density, frequency of measurement acquisition and cost of deployment [5].  This paper explores 
the challenges of monitoring at the basin scale and the difficulties encountered in detecting a leak at the surface.  We 
focus on the problem of leak detection at the surface.  A framework for detection based on Bayesian model selection 
theory is presented and applied to the problem of distinguishing whether detected CO2 is from a leak or from 
background fluctuations.  Cases from a single measurement site and from two simultaneously measured locations 
are used to demonstrate the power of Bayesian decision tools in assisting leak detection and data integration to 
improve detection limits. 

2.   The Need for Integrated Monitoring 

Designing an effective scheme for monitoring CO2 sequestration is not a trivial task.  Technical issues such as 
determining whether a leak can be distinguished from background CO2 levels, and the type and magnitude of leak 
that can be detected are intertwined with the cost of monitoring network.  Incorporating risk into monitoring design 
requires a sound understanding the systems interactions, limitations of monitoring methods and instrumentation, and 
uncertainty in models and parameters employed.   

Table 1 lists costs for a number of monitoring technologies.  A high cost, high resolution method, such as 
seismic, is effective at tracking the movement of CO2 in the subsurface with a relatively high degree of certainty, but 
the high cost precludes frequent measurements to provide the most up to date view of the state of the system.  Low 
cost, low resolution methods, such as surface deformation, permit more frequent measurements, but have more 
uncertainty in the location of the CO2 and whether the anomaly detected is real.  The interval between measurements 
represents the minimum time that an anomaly could be detected.  In the Sleipner project, repeat seismic surveys are 
performed at two year intervals, on average, whereas satellite based geodetic measurements, such as InSAR, can be 
acquired at bimonthly intervals.  The size of the leak and the associated remediation costs would be much larger in 
the case of a seismic based monitoring program than an InSAR based program. 

Designing a monitoring system for basin scale injection presents a number of challenges not encountered in 
present day operations.  The large footprints of injection at the Gigatonne scale are expected to cover a variety of 
surface and subsurface environments, requiring integration of different monitoring techniques appropriate for each 
domain of the system, each having different scales of support, to provide a consistent view of the state of the system.  
Detection limits of a monitoring array are a function of the spatial density of the network.  Implicit in the design is 
the level of uncertainty acceptable in detection.  Techniques, such as flux chambers or fluid samples from 
observation wells, are point measurements which provide a high degree of certainty in the vicinity of measurement, 
but require a dense spatial sampling array to interpolate between measurements and characterize spatial variability 
of CO2 concentrations.  Methods, such as eddy covariance towers, have the ability to monitor large areas but provide 
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an integrated measurement of the processes over the footprint area.  Installation of permanent sensors may constrain 
future monitoring configurations later in the life of the project. 

Observations from multiple types of complementary information can be jointly assimilated to constrain the 
solution and increase confidence in detecting a leak.  Each type of monitoring data yields information about a 
particular attribute of the system at that scale.  Integration of complementary data provides a more robust assessment 
of the state of the system, allowing for a more confident assessment of storage security.  The task of designing a 
monitoring program can be recast as an optimization problem where different techniques and deployment 
configurations are selected to meet the goals of detection and balance the trade-offs between safety, cost and 
uncertainty. 

 
Table 1:  Costs for a selection of monitoring techniques.  The small estimate represents the cost for monitoring a 

Sleipner sized area.  The large estimate represents the cost for monitoring a basin scale project.  The high 
resolution, intensive monitoring programs currently applied to existing sequestration projects are not 
economically feasible at the basin scale. 

 
Technology Unit Cost 20 km

2
 ($MM) 1000 km

2
 ($MM) 

Seismic $38,610/km2 [6] 0.772 38.6 
Observation well $3,000,000/well  

(including logs) [7] 
3 120  

1 well/25 km2) 
Fluid sample and 
analysis 

$200/sample [8] 0.000,8 (4 repeat samples/ well) 0.032 

InSAR $2,000-3,000/km2 [9] 0.04-0.06 2-3 
Eddy covariance 
tower 

$25,000/tower [10] 3.9 (2 m tower height, 0.1 km2 flux 
footprint) 
0.03 (30 m tower height, 28 km2 flux 
footprint) 

250 (2 m tower 
height) 
0.89 (30 m tower 
height) 

3. Challenges of Leak Detection 

Because of the large number of natural and anthropogenic sources of CO2 at the surface, distinguishing a leak 
from background CO2 concentrations is a challenging task.  Natural fluctuations and instrument error result in a 
noisy signal which may mask the presence of a small leak.  Figure 1 shows CO2 measurements from the Ameriflux 
Harvard Forest site [11].  Large daily, seasonal and annual fluctuations make small, leak detection challenging.  
Overprinted on the data is a long term trend, which could be attributed to instrument drift or increasing atmospheric 
CO2 concentrations.   Well characterized baseline concentrations of CO2 fluctuations at the site are essential for 
understanding the causes of variability and identifying anomalous concentrations of CO2.  Tracers co-injected with 
the CO2 can remove ambiguity about the source [12], provided they propagate through the system at the same or 
greater velocity as the injected CO2.   Naturally occurring isotopes and concentrations of associated combustion 
species, such as CO, can be used to discriminate between atmospheric CO2 concentration due to fossil fuels and CO2 
due to natural biogenic processes [13].   
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Figure 1:  CO2 measurements taken at the 
Ameriflux Harvard Forest site.  The 
observed signal is subject to large 
natural fluctuations, gaps in continuity 
of measurements, instrument error and 
anthropogenic influences. 
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4. Bayesian Model Selection Applied to Leak Detection 

Given the uncertainty in the system, if CO2 fluctuations are well characterized, leak detection is an exercise in 
detecting a change in the statistics of the population of measurements.  The presence of a leak will alter the statistics 
of the set of observations.  Detecting a leak can be viewed as a model selection problem, where we need to choose 
between two competing theories:  the presence of a leak (ML) and the presence of no leak (MNL), given an observed 
set of data (D).  A schematic of the model selection problem is shown in Figure 2.  The task is to select the model 
that best represents the distribution of observations.   
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Bayesian model selection provides a framework for determining which model is supported by the data [14].  This 

technique is widely used to support decision analysis in fields ranging from financial engineering to social science to 
biostatistics to atmospheric science.  In this application, we use the Bayes factor, BL,NL, to discriminate between the 
two models: 

,

( | ) ( | , )( | )
( | ) ( | ) ( | , )

L L L L LL
L NL

NL NL NL NL NL NL

P M P D M dP D MB
P D M P M P D M d

� � �

� � �
� � �

�
,   (1) 

where � are the parameters for the respective models.  Bayes factors provide a flexible framework for allowing us to 
combine prior and posterior information into a ratio indicative of evidence in favor of one model versus another.  
Table 2 summarizes the interpretation of the Bayes factor for decision support.   
 
Table 2:  Interpretation of Bayes factors, after Jeffreys [15]. 
 

B12 Strength of evidence 

< 1 Negative, supports M2 
1-3 Slight support for M1 
3-10 Substantial support for M1 
10-30 Strong support for M1 
30-100 Very strong support for M1 
> 100 Decisive support for M1 

 
Bayesian model comparison has a number of advantages over traditional hypothesis test methods.  Because it 

considers the probability of possible value of parameters of interest, it can explicitly account for uncertainty in the 
model and parameters, and is not dependent on the parameters used by each model.  There are no implicit 

Figure 2:  Schematic of the leak detection problem 
framed as an exercise in model discrimination.  For 
small leakage concentrations, there is large overlap 
between the distributions and large ambiguity in 
discriminating which model is best described by the 
data.  For large leakage concentrations, there is little 
overlap between distributions and less ambiguity 
regarding the distribution which best represents the 
observations. 
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assumptions on the distribution of the data, allowing flexibility to compare random variables characterized by 
complex, non-Gaussian distributions.  It also guards against the problem of over fitting to the data, if one model has 
more complexity than the other.  A disadvantage to Bayesian comparison is that it may be computationally intensive 
to obtain likelihoods if they are characterized by complex distributions.  Additionally, prior distributions for the 
parameters for each model must be specified, and these may not be readily available.  

4.1. Model Selection Applied to a Single Monitoring Site  

The Bayesian selection framework was applied to investigate the ability to distinguish small leaks in a noisy 
signal.  One year of CO2 concentration data was extracted from the Harvard forest data set.  The distributions for 
synthetic leaks of 0.1, 0.5, 1.0 and 5.0 ppm were created by adding those amounts to the data.  Distributions of the 
models are shown in Figure 3a.  Simulating a leak in this manner produces a translation of the probability 
distribution centered about a higher mean, while the variance remains the same.  A set of observations were drawn 
from each leak concentration distribution and the likelihood of observations resulting from the leakage distribution 
were compared against the likelihood that the observations was drawn from the distribution representing the no 
leakage case.  Figure 3b summarizes the ability to select the leakage model given observations at a single 
measurement site, using the Bayesian framework.  
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Figure 3:  a) Model distributions of the 0.1, 0.5, 1 and 5 ppm leakage models to be compared.  Distributions of the 
small leakage concentrations have a large overlap with the distribution of the background concentration.  b) 
Summary of Bayes factors in support of the ML.  The 5 ppm leak has decisive support of ML for measurement 
populations greater than 5. 

 
With the exception of the 0.1 ppm leak, as the number of samples increase, support to determine if a leak is 

present in a noisy signal increases.  Because the overlap between distributions decreases as the imposed leak is 
increased, there is a higher likelihood that a observations from a leakage signal will sample the distribution of the 
leakage model.  Also, less observations are required to detect a leak for larger leakage signals.  In the case of the 0.1 
ppm leak, the distributions are very similar and there likelihood of samples representing the leakage distribution is 
similar to sampling the background signal distribution.  Even with a large number of samples, it is not possible to 
confidently distinguish the model which best supports the observations when a small population is present.    

4.2.  Model Selection Applied to Two Monitoring Sites 

In this section, we investigate the role that additional information and type of information have on the ability to 
improve model selection.  We consider observations from two monitoring sites, which monitor different attributes of 
the process.  A schematic of this scenario is shown in Figure 5.  We consider a scenario where there is a known 
potential leakage pathway, such as an abandoned wellbore or fault located a distance from the injection site.  Surface 
observations were taken 250 m downstream from the leakage location, and measurements of subsurface changes 
caused by potential CO2 migration are taken at a location 100 m upstream of the leakage pathway.  Estimates of 
plume thickness between observation wells are obtained through indirect geophysical measurements taken at the 
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surface.  These could be obtained through an inversion of the changes in seismic velocity or gravity components.  
Prior information, such as the direction of background flow in the regional aquifer and alignment of monitoring 
stations with the direction of flow, allows us to incorporate the physics of the process into the probability model.   

 

 
 

Figure 5:  Schematic of two monitoring station case. 
 

Analytical models coupling subsurface flow [16] and surface dispersion of CO2 [17] were used to estimate joint 
probability distribution of surface and subsurface observations.  The surface dispersion model was used to estimate 
the leakage rate given the specified downstream distance and distribution of the specified leakage signal to be 
detected.  For the distribution of leakage rates given by the surface model, the subsurface model was used to 
calculate the distribution of plume thicknesses at the monitoring site.  Model parameters for the subsurface and 
subsurface models are listed in Table A1 of the Appendix.  Uncertainty in aquifer thickness and porosity of the 
subsurface model was also considered.   
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Figure 6:  Distributions of surface and subsurface observations:  a) Joint distribution for the correlated leakage case, 

b) Comparison of marginal distributions of concentration and plume thickness for the leakage and no leakage 
models.  The marginal distributions of the leakage rate and plume thickness are obscured by the random noise.  
The correlated surface and subsurface measurements constrain the joint distribution of observations, providing 
intrinsic support for ML. 

 
Distributions for the correlated and uncorrelated models are shown in Figure 6.  For case with no leakage, surface 

and subsurface measurements were assumed uncorrelated.  The subsurface set of measurements for the case of no 
leakage is obtained by applying a Gaussian noise distribution about the mean calculated plume thickness, consistent 
with the error associated with the monitoring method (standard deviation of high precision field gravimetry:  +/- 
0.030 mGal [18]).  The set of surface concentration observations was constructed from a Gaussian noise model with 
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the same magnitude of standard deviation as the single monitoring station case.  Leakage of 0.1 ppm and 0.5 ppm 
were considered.  Bayes factors comparing observations taken at two sites are summarized in Table 4.   

When another observation point is considered in the analysis, the number of observations required to support a 
proposed model is significantly reduced.  Even with the overprinting of the noise on the leakage signals, prior 
knowledge of the correlation between the observed data points provided by the coupled transport model, constrains 
the distribution of possible observations.  This allows for a more confident differentiation of a leak from a noisy 
signal and with fewer observations.  Faster and more confident leak detection will result in a smaller volume of CO2 
released back into the atmosphere, potentially resulting in lower remediation costs to clean up the leak and loss of 
fewer carbon credits.  Earlier detection of a leak also provides value by maintaining a greater number of available 
options for remediation at earlier stages, which may also be less disruptive.  Moreover, the public perception in 
successfully remediating an anomaly early in the life of a leak will be less harsh than remediation interventions later 
in the life of a leak.  The trade-off between quicker and less ambiguous leak detection must be weighed with the cost 
of operating the additional monitoring station, and the increased footprint of the monitoring program.     
 
Table 4:  Summary of Bayes factors for support of ML incorporating observations from to monitoring sites. 

 
 5 samples 10 samples  25 samples 

0.1 ppm leak 8.7 19.7 23.0 
0.5 ppm leak 8.2  24.3 41.9 

 

5. Conclusions 

Designing a monitoring network at the basin scale presents challenges not encountered in current injection 
projects.  Because of the large footprint expected of these operations, deployment of high resolution monitoring 
programs is not economically feasible.  Trade-offs between the acceptable level of detection for a specified level of 
cost and acceptable risk must be made.  A determination of the absolute acceptable leakage rate is required to design 
a monitoring program that safeguards the public and protects the environment. 

Detection of a CO2 at the surface is difficult due to the large variations of CO2 in the atmosphere due to natural 
and anthropogenic processes, which can mask the signal of a low concentration leak.  Bayes factors provide a 
powerful tool for assisting decisions of distinguishing whether low concentration leaks can be distinguished from 
background noise.  Incorporation of prior information through an understanding of the underlying correlation 
between observations constraints the distribution of jointly observed data and improves the decision support for 
discriminating whether CO2 measurement are due to background fluctuations or due to a leak.  When measurements 
are integrated with additional observations, detection time can be dramatically reduced and the sensitivity of 
detection can be increased, allowing faster detection of smaller leakage rates from a noisy signal.  Application of 
complementary data integration, mutual information and decision support tools should be considered when 
designing a robust monitoring network that reduces risk and ensures safe operation.  Incorporating such a framework 
will allow cost effective integration of complementary methods, combining both high cost and low cost techniques. 
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Appendix 

Table A1:  Summary of parameters used in the surface and subsurface analytical models.   
 

Surface Dispersion Model  Subsurface Transport Model 
� 0.315  � 0.2±0.05 
� 1.5×10-5 m2/s  �CO2 0.05×10-3 Pa s 
u* 0.087  �w 0.8×10-3 Pa s 
K 0.4  �CO2 400 kg/m3 
M 0.685  �w 1000 kg/m3 
Z 0.75 m  H 100 ± 5m 
z1 10 m  L 10 km 
   Sgr 0.3 
   Swc 0.4 
   U 1 m/year 
   k 1×10-13 m2 
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