2,666 research outputs found

    Giant Electron-hole Charging Energy Asymmetry in Ultra-short Carbon Nanotubes

    Get PDF
    Making full usage of bipolar transport in single-wall carbon nanotube (SWCNT) transistors could permit the development of two-in-one quantum devices with ultra-short channels. We report on clean ∌\sim10 to 100 nm long suspended SWCNT transistors which display a large electron-hole transport asymmetry. The devices consist of naked SWCNT channels contacted with sections of SWCNT-under-annealed-gold. The annealed gold acts as an n-doping top gate which creates nm-sharp barriers at the junctions between the contacts and naked channel. These tunnel barriers define a single quantum dot (QD) whose charging energies to add an electron or a hole are vastly different (e−he-h charging energy asymmetry). We parameterize the e−he-h transport asymmetry by the ratio of the hole and electron charging energies ηe−h\eta_{e-h}. We show that this asymmetry is maximized for short channels and small band gap SWCNTs. In a small band gap SWCNT device, we demonstrate the fabrication of a two-in-one quantum device acting as a QD for holes, and a much longer quantum bus for electrons. In a 14 nm long channel, ηe−h\eta_{e-h} reaches up to 2.6 for a device with a band gap of 270 meV. This strong e−he-h transport asymmetry survives even at room temperature

    The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing

    Get PDF
    Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted micro wires the three-dimensional wires that push directly on a micro-fabricated chip, making electrical contact. A small wire cross section (~1 mmm), nearly non-magnetic components, and functionality at low temperatures make the quantum socket ideal to operate solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from DC to 8 GHz, with a contact resistance of ~150 mohm, an impedance mismatch of ~10 ohm, and minimal crosstalk. As a proof of principle, we fabricated and used a quantum socket to measure superconducting resonators at a temperature of ~10 mK.Comment: Main: 31 pages, 19 figs., 8 tables, 8 apps.; suppl.: 4 pages, 5 figs. (HiRes figs. and movies on request). Submitte

    Attention and Emotion Influence the Relationship Between Extraversion and Neural Response

    Get PDF
    Extraversion has been shown to positively correlate with activation within the ventral striatum, amygdala and other dopaminergically innervated, reward-sensitive regions. These regions are implicated in emotional responding, in a manner sensitive to attentional focus. However, no study has investigated the interaction among extraversion, emotion and attention. We used fMRI and dynamic, evocative film clips to elicit amusement and sadness in a sample of 28 women. Participants were instructed either to respond naturally (n = 14) or to attend to and continuously rate their emotions (n = 14) while watching the films. Contrary to expectations, striatal response was negatively associated with extraversion during amusement, regardless of attention. A negative association was also observed during sad films, but only when attending to emotion. These findings suggest that attentional focus does not influence the relationship between extraversion and neural response to positive (amusing) stimuli but does impact the response to negative (sad) stimuli

    The importance of endpoint selection: how effective does a drug need to be for success in a clinical trial of a possible Alzheimer's disease treatment?

    Get PDF
    To date, Alzheimer's disease (AD) clinical trials have been largely unsuccessful. Failures have been attributed to a number of factors including ineffective drugs, inadequate targets, and poor trial design, of which the choice of endpoint is crucial. Using data from the Alzheimer's Disease Neuroimaging Initiative, we have calculated the minimum detectable effect size (MDES) in change from baseline of a range of measures over time, and in different diagnostic groups along the AD development trajectory. The Functional Activities Questionnaire score had the smallest MDES for a single endpoint where an effect of 27% could be detected within 3 years in participants with Late Mild Cognitive Impairment (LMCI) at baseline, closely followed by the Clinical Dementia Rating Sum of Boxes (CDRSB) score at 28% after 2 years in the same group. Composite measures were even more successful than single endpoints with an MDES of 21% in 3 years. Using alternative cognitive, imaging, functional, or composite endpoints, and recruiting patients that have LMCI could improve the success rate of AD clinical trials
    • 

    corecore