6 research outputs found

    A ‘quiet revolution’? The impact of Training Schools on initial teacher training partnerships

    Get PDF
    This paper discusses the impact on initial teacher training of a new policy initiative in England: the introduction of Training Schools. First, the Training School project is set in context by exploring the evolution of a partnership approach to initial teacher training in England. Ways in which Training Schools represent a break with established practice are considered together with their implications for the dominant mode of partnership led by higher education institutions (HEIs). The capacity of Training Schools to achieve their own policy objectives is examined, especially their efficacy as a strategy for managing innovation and the dissemination of innovation. The paper ends by focusing on a particular Training School project which has adopted an unusual approach to its work and enquires whether this alternative approach could offer a more profitable way forward. During the course of the paper, five different models of partnership are considered: collaborative, complementary, HEI-led, school-led and partnership within a partnership

    The origin of overpressure in 'old' sedimentary basins: an example from the Cooper Basin, Australia

    No full text
    The definitive version is available at www.blackwell-synergy.comOverpressure in 'old' sedimentary basins that have not undergone rapid, recent sedimentation cannot be easily explained using traditional burial-driven mechanisms. The last significant burial event in the Cooper Basin, Australia, was the Late Cretaceous deposition of the Winton Formation (98.5-90 Ma). Maximum temperature in the basin was attained during the Late Cretaceous, with cooling beginning prior to 75 Ma. Hence, overpressure related to rapid burial or palaeomaximum temperatures (e.g. hydrocarbon generation) must have developed prior to 75 Ma. Retaining overpressure for 75 Ma in 'old' basins such as the Cooper Basin requires extremely low seal permeabilities. An alternative explanation is that overpressure in the Cooper Basin has been generated because of an increase in mean stress associated with an increase in horizontal compressive stress since Late Cretaceous times. Structural observations and contemporary stress data indicate that there has been an increase in mean stress of approximately 50 MPa between Late Cretaceous times to that presently measured at 3780 m. The largest measured overpressure in the Cooper Basin is 14.5 MPa at 3780 m in the Kirby 1 well. Hence, disequilibrium compaction driven by increasing mean stress can explain the magnitude of the observed overpressure in the Cooper Basin. Increases in mean stress (tectonic loading) may be a feasible mechanism for overpressure generation in other 'old' basins that have undergone a recent increase in horizontal stress (e.g. Anadarko Basin).P. Van Ruth, R. Hillis, P. Tingate and R. Swarbric

    Quantitative basin modeling: present state and future developments towards predictability

    No full text
    A critique review of the state of quantitative basin modeling is presented. Over the last 15 years, a number of models are proposed to advance our understanding of basin evolution. However, as of present, most basin models are two dimensional (2-D) and subject to significant simplifications such as depth- or effective stress-dependent porosity, no stress calculations, isotropic fracture permeability, etc. In this paper, promising areas for future development are identified. The use of extensive data sets to calibrate basin models requires a comprehensive reaction, transport, mechanical (RTM) model in order to generate the synthetic response. An automated approach to integrate comprehensive basin modeling and seismic, well-log and other type of data is suggested. The approach takes advantage of comprehensive RTM basin modeling to complete an algorithm based on information theory that places basin modeling on a rigorous foundation. Incompleteness in a model can self-consistently be compensated for by an increase in the amount of observed data used. The method can be used to calibrate the transport, mechanical, or other laws underlying the model. As the procedure is fully automated, the predictions can be continuously updated as new observed data become available. Finally, the procedure makes it possible to augment the model itself as new processes are added in a way that is dictated by the available data. In summary, the automated data/model integration places basin simulation in a novel context of informatics that allows for data to be used to minimize and assess risk in the prediction of reservoir location and characteristics
    corecore