2 research outputs found

    Optimal SL(2)-homomorphisms

    Full text link
    Let G be a semisimple group over an algebraically closed field of very good characteristic for G. In the context of geometric invariant theory, G. Kempf has associated optimal cocharacters of G to an unstable vector in a linear G-representation. If the nilpotent element X in Lie(G) lies in the image of the differential of a homomorphism SL(2) --> G, we say that homomorphism is optimal for X, or simply optimal, provided that its restriction to a suitable torus of SL(2) is optimal for X in Kempf's sense. We show here that any two SL(2)-homomorphisms which are optimal for X are conjugate under the connected centralizer of X. This implies, for example, that there is a unique conjugacy class of principal homomorphisms for G. We show that the image of an optimal SL(2)-homomorphism is a completely reducible subgroup of G; this is a notion defined recently by J-P. Serre. Finally, if G is defined over the (arbitrary) subfield K of k, and if X in Lie(G)(K) is a K-rational nilpotent element whose p-th power is 0, we show that there is an optimal homomorphism for X which is defined over K.Comment: AMS-LaTeX, 26 pages. To appear in Comment. Math. Helv. The most substantial modification found in the revision is a proof of the G(K)-conjugacy of any 2 optimal SL(2)-homomorphisms for X in Lie(G)(K) which are defined over K; see Prop/Def 21 and Theorem 4

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore