4,734 research outputs found

    Pulmonary arterial hypertension: a new era in management

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Pulmonary arterial hypertension (PAH) is a heterogeneous condition with a wide range of causes. The diagnosis is often delayed or missed. PAH is covert in its early stages, when its detection and treatment should have the most impact. Access in Australia to effective PAH therapies has lagged behind that in other affluent countries. New agents for PAH, now becoming available, improve symptoms and reduce pulmonary resistance, with some demonstrating an ability to reverse remodelling of the right ventricle. Best management of PAH is comprehensive and multidisciplinary. Centres of excellence are needed in geographically strategic areas. Aggressive efforts must be made to diagnose PAH and to facilitate access to effective therapies.Anne M Keogh, Keith D McNeil, Trevor Williams, Eli Gabbay and Leslie G Clelan

    Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser

    Get PDF
    A method to achieve high-brightness self-amplified spontaneous emission (HB-SASE) in the free-electron laser (FEL) is described. The method uses repeated nonequal electron beam delays to delocalize the collective FEL interaction and break the radiation coherence length dependence on the FEL cooperation length. The method requires no external seeding or photon optics and so is applicable at any wavelength or repetition rate. It is demonstrated, using linear theory and numerical simulations, that the radiation coherence length can be increased by approximately 2 orders of magnitude over SASE with a corresponding increase in spectral brightness. Examples are shown of HB-SASE generating transform-limited FEL pulses in the soft x-ray and near transform-limited pulses in the hard x-ray. Such pulses may greatly benefit existing applications and may also open up new areas of scientific research

    WMAP Haze: Directly Observing Dark Matter?

    Full text link
    In this paper we show that dark matter in the form of dense matter/antimatter nuggets could provide a natural and unified explanation for several distinct bands of diffuse radiation from the core of the Galaxy spanning over 12 orders of magnitude in frequency. We fix all of the phenomenological properties of this model by matching to x-ray observations in the keV band, and then calculate the unambiguously predicted thermal emission in the microwave band, at frequencies smaller by 10 orders of magnitude. Remarkably, the intensity and spectrum of the emitted thermal radiation are consistent with--and could entirely explain--the so-called "WMAP haze": a diffuse microwave excess observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy Probe (WMAP). This provides another strong constraint of our proposal, and a remarkable nontrivial validation. If correct, our proposal identifies the nature of the dark matter, explains baryogenesis, and provides a means to directly probe the matter distribution in our Galaxy by analyzing several different types of diffuse emissions.Comment: 16 pages, REVTeX4. Updated to correspond with published version: includes additional appendices discussing finite-size effect

    Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in 58^{58}Ni+60^{60}Ni Reactions

    Get PDF
    Energy dissipative processes play a key role in how quantum many-body systems dynamically evolve towards equilibrium. In closed quantum systems, such processes are attributed to the transfer of energy from collective motion to single-particle degrees of freedom; however, the quantum many-body dynamics of this evolutionary process are poorly understood. To explore energy dissipative phenomena and equilibration dynamics in one such system, an experimental investigation of deep-inelastic and fusion-fission outcomes in the 58^{58}Ni+60^{60}Ni reaction has been carried out. Experimental outcomes have been compared to theoretical predictions using Time Dependent Hartree Fock and Time Dependent Random Phase Approximation approaches, which respectively incorporate one-body energy dissipation and fluctuations. Excellent quantitative agreement has been found between experiment and calculations, indicating that microscopic models incorporating one-body dissipation and fluctuations provide a potential tool for exploring dissipation in low-energy heavy ion collisions.Comment: 11 pages, 9 figures, 1 table, including Supplemental Material - Version accepted for publication in Physical Review Letter

    Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements

    Get PDF
    Measurements of mass-angle distributions (MADs) for Cr + W reactions, providing a wide range in the neutron-to-proton ratio of the compound system, (N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be determined in a model-independent way. Previous experimental and theoretical studies had produced conflicting conclusions. The experimental MADs reveal an increase in contact time and mass evolution of the quasifission fragments with increasing (N/Z)CN, which is indicative of an increase in the fusion probability. The experimental results are in agreement with microscopic time-dependent Hartree-Fock calculations of the quasifission process. The experimental and theoretical results favor the use of the most neutron-rich projectiles and targets for the production of heavy and superheavy nuclei.Comment: Accepted to PRC as a Rapid Communicatio

    E-MSD: an integrated data resource for bioinformatics

    Get PDF
    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the worldwide Protein Data Bank (wwPDB) and to work towards the integration of various bioinformatics data resources. One of the major obstacles to the improved integration of structural databases such as MSD and sequence databases like UniProt is the absence of up to date and well-maintained mapping between corresponding entries. We have worked closely with the UniProt group at the EBI to clean up the taxonomy and sequence cross-reference information in the MSD and UniProt databases. This information is vital for the reliable integration of the sequence family databases such as Pfam and Interpro with the structure-oriented databases of SCOP and CATH. This information has been made available to the eFamily group (http://www.efamily.org.uk/) and now forms the basis of the regular interchange of information between the member databases (MSD, UniProt, Pfam, Interpro, SCOP and CATH). This exchange of annotation information has enriched the structural information in the MSD database with annotation from wider sequence-oriented resources. This work was carried out under the ‘Structure Integration with Function, Taxonomy and Sequences (SIFTS)’ initiative (http://www.ebi.ac.uk/msd-srv/docs/sifts) in the MSD group
    • …
    corecore