80 research outputs found

    Quantitative Gait and Balance Outcomes for Ataxia Trials: Consensus Recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers

    Get PDF
    \ua9 2023, The Author(s).With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials. This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes

    Quantitative gait and balance outcomes for ataxia trials: consensus recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers

    Get PDF
    With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes

    Rotated partial distance search for faster vector quantization encoding

    No full text

    Tracking tremor frequency in spike trains using the extended Kalman smoother

    No full text

    Morphology Analysis of Intracranial Pressure Using Pattern Matching Techniques

    No full text
    We present a clustering algorithm based on Dynamic Time Warping (DTW) to automatically classify intracranial pressure (ICP) beats based on their morphology. The algorithm detects, classifies and labels each beat as a low--pressure or high--pressure beat based on morphology. The trend is removed during prepocessing to ensure the classifications are independent of the mean ICP. An ICP beat detection algorithm is used to automatically detect each beat. We measured the performance of the algorithm compared to expert classification of ICP beats acquired from intensive care unit patients using linear and non-- linear temporal alignment techniques. The algorithm achieved a superior performance using non--linear temporal alignment
    corecore